Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Chordal graphs and their clique graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1017))

Included in the following conference series:

Abstract

In the first part of this paper, a new structure for chordal graph is introduced, namely the clique graph. This structure is shown to be optimal with regard to the set of clique trees. The greedy aspect of the recognition algorithms of chordal graphs is studied. A new greedy algorithm that generalizes both Maximal cardinality Search (MCS) and Lexicographic Breadth first search is presented. The trace of an execution of MCS is defined and used in two linear time and space algorithms: one builds a clique tree of a chordal graph and the other is a simple recognition procedure of chordal graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. J. Assoc. Comput., 30:479–513, 1983.

    Google Scholar 

  2. C. Berge. Hypergraphs. North Hollands, 1989.

    Google Scholar 

  3. J.R.S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. preprint.

    Google Scholar 

  4. O. Boruvka. On a minimal problem. Proc Moravske Predovedecke Spolecrosti, 3, 1926.

    Google Scholar 

  5. A. BrandstÄdt, F.F. Dragan, V.D. Chepoi, and V.I Voloshin. Dually chordal graphs. In Proceedings of the 19th Inter. Workshop on Graph-Theoretic Concept in Computer Science, 1993. WG93.

    Google Scholar 

  6. P. Buneman. A characterization of rigid circuit graphs. Discrete Math., 9:205–212, 1974.

    Article  Google Scholar 

  7. E. Dahlhaus, P.L. Hammer, F. Maffray, and S. Olariu. On domination elimination orderings and domination graphs. Technical Report 27-94, Rutgers University Center of Operations Research, P.O. Box 5062, New Brunswick, New Jersey, USA, August 1994.

    Google Scholar 

  8. G.A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Uni. Hamburg 25, 1961.

    Google Scholar 

  9. F. Gavril. The intersection graphs of a path in a tree are exactly the chordal graphs. Journ. Comb. Theory, 16:47–56, 1974.

    Google Scholar 

  10. Ryan B. Hayward. Weakly triangulated graphs. Journal of Combinatorial theory, 39:200–209, 1985. Serie B.

    Google Scholar 

  11. B. Körte, L. Lovász, and R. Schrader. Greedoids. Number 4 in Algorithms and Combinatorics. Springer Verlag, 1991.

    Google Scholar 

  12. J.G Lewis, B.W. Peyton, and A. Pothen. A fast algorithm for reordering sparse matrices for parallel factorization. SIAM J. Sci. Stat. Comput., 10(6): 1146–1173, November 1989.

    Google Scholar 

  13. S. Olariu. Some aspects of the semi-perfect elimination. Discrete Applied Mathematics, 31:291–298, 1991.

    Google Scholar 

  14. B. Peyton. Some applications of clique trees to the solutions of sparse linear systems. PhD thesis, Clemson University, 1986.

    Google Scholar 

  15. R.C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal, 1957.

    Google Scholar 

  16. Donald J. Rose. Triangulated graphs and the elimination process. Journal of Mathematical Analysus and Applications, 32:597–609, 1970.

    Google Scholar 

  17. Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM Journal of Computing, 5(2):266–283, June 1976.

    Google Scholar 

  18. P. Rosenstielh. L'arbre minimum d'un graphe. Theory of Graphs, 1967. P. Rosenstielh, editor, Gordon and Breach, New York.

    Google Scholar 

  19. Y. Shibata. On the tree representation of chordal graphs. Journal of Graph Theory, 12:421–428, 1988.

    Google Scholar 

  20. R.E. Tarjan and M. Yannakakis. Simple linear algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergaphs. SIAM Journal of Computing, 13:566–579, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manfred Nagl

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galinier, P., Habib, M., Paul, C. (1995). Chordal graphs and their clique graphs. In: Nagl, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 1995. Lecture Notes in Computer Science, vol 1017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60618-1_88

Download citation

  • DOI: https://doi.org/10.1007/3-540-60618-1_88

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60618-5

  • Online ISBN: 978-3-540-48487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics