Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Front tracking: A parallelized approach for internal boundaries and interfaces

  • Conference paper
  • First Online:
Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science (PARA 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1041))

Included in the following conference series:

  • 191 Accesses

Abstract

Internal boundaries and interfaces are an important part of many fluid and solid modeling problems. Front Tracking contains a general interface framework, closely related to the non-manifold geometry used in CAD solid modeling packages, to support numerical simulation of such fluid problems. It can thus be considered to be a systematic application of the ideas of computational geometry to computational fluid dynamics. It is based on the principle that finite differences behave best when applied to differentiable functions, and that weak derivatives of nondifferentiable functions can be replaced by regularized expressions such as jump conditions. Front Tracking offers superior resolution for fluid problems with important discontinuities and interfaces, and in some cases, it has provided the unique method to obtain correct answers. Here we present Computer Science issues which have contributed to the success of Front Tracking: software design and organization — modularity, data structures and data hiding.

Supported by the Applied Mathematics Subprogram of the U.S. Department of Energy DE-FG02-90ER25084.

Also supported by the Army Research Office, grant DAAL03-92-G-0185 and through the Mathematical Sciences Institute of Cornell University under subcontract to the University at Stony Brook, ARO contract number DAAL03-91-C-0027, and the National Science Foundation, grant DMS-9201581.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bell, J. B., Colella, P., Welcome, M. L.: Conservative front-tracking for inviscid compressible flow. UCRL-JC-105251, preprint (1991)

    Google Scholar 

  2. Boston, B., Glimm, J., Grove, J. W., Holmes, R., Zhang, Q.: Multiscale Structure for Hyperbolic Waves. Report No. SUNYSB-AMS-93-18, State Univ. of New York at Stony Brook (1993) In: Proceedings of the International Conference on Nonlinear Evolution Partial Differential Equations, Beijing, P.R. China 1993

    Google Scholar 

  3. Boston, B., Grove, J. W., Henderson, L. F., Holmes, R., Sharp, D. H., Yang, Y., Zhang, Q.: Shock Induced Surface Instabilities and Nonlinear Wave Interactions. Report No. SUNYSB-AMS-93-20 (1993), State Univ. of New York at Stony Brook In: Proceedings of Eleventh Army Conference on Applied Mathematics and Computing

    Google Scholar 

  4. Boston, B., Grove, J. W., Holmes, R.: Front Tracking Simulations of Shock Refractions and Shock Induced Mixing. Report No. SUNYSB-AMS-93-19 (1993), State Univ. of New York at Stony Brook. In: Proceedings of the 19th International Symposium on Shock Waves

    Google Scholar 

  5. Chen, Y., Deng, Y., Glimm, J., Li, G., Sharp, D. H., Zhang, Q.: A Renormalization Group Scaling Analysis For Compressible Two-Phase Flow. Phys. Fluids A 5 (1993) 2929–2937

    Google Scholar 

  6. Chern, I-L., Colella, P.: A Conservative Front Tracking Method for Hyperbolic Conservation Laws. LLNL Rep. No. UCRL-97200 (1987)

    Google Scholar 

  7. Chern, I-L., Glimm, J., McBryan, O., Plohr, B., Yaniv, S.: Front Tracking for Gas Dynamics. J. Comput. Phys. 62 (1986) 83–110

    Google Scholar 

  8. Coulter, L., Grove, J. W.: The Application of Piecewise Smooth Bivariate Interpolation to Multiphase Tabular Equation of States. Report No. SUNYSB-AMS-92-11 (1992) University at Stony Brook

    Google Scholar 

  9. Lisa Osterman Coulter: Piecewise Smooth Interpolation and the Efficient Solution of Riemann Problems with Phase Transitions. Ph.D. Thesis New York Univ. 1991

    Google Scholar 

  10. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton, 1952

    Google Scholar 

  11. Glimm, J., Grove, J., Lindquist, W. B., McBryan, O., Tryggvason, G.: The Bifurcation of Tracked Scalar Waves. SIAM J. Sci. Stat. Comput. 9 (1988) 61–79

    Google Scholar 

  12. Glimm, J., Isaacson, E., Marchesin, D., McBryan, O.: Front Tracking for Hyperbolic Systems: Adv. Appl. Math. 2 (1981) 91–119

    Google Scholar 

  13. Glimm, J., Klingenberg, C., McBryan, O., Plohr, B., Sharp, D., Yaniv, S.: Front Tracking and Two Dimensional Riemann Problems. Adv. Appl. Math. 6 (1985) 259–290

    Google Scholar 

  14. J. Glimm W. B. Lindquist O. McBryan L. Padmanabhan A Front Tracking Reservoir Simulator, Five-Spot Validation Studies and the Water Coning Problem. In: Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 1 (1983) 107

    Google Scholar 

  15. Glimm, J., McBryan, O.: A Computational Model for Interfaces. Adv. Appl. Math. 6 (1985) 422–435

    Google Scholar 

  16. Grove, J., Holmes, R., Sharp, D. H., Yang, Y., Zhang, Q.: Quantitative Theory of Richtmyer-Meshkov Instability. Phys. Rev. Lett. 71 (1993) 3473–3476

    PubMed  Google Scholar 

  17. Grove, J. W.: Applications of Front Tracking to the Simulation of Shock Refractions and Unstable Mixing. J. Appl. Num. Math. 14 (1994) 213–237

    Google Scholar 

  18. Grove, J. W., Yang, Y., Zhang, Q., Sharp, D. H., Glimm, J., Boston, B., Holmes, R.: The Application of Front Tracking to the Simulation of Shock Refractions and Shock Accelerated Interface Mixing. In: Proceedings of the 4th International Workshop on the Physics of Compressible Turbulent Mixing Cambridge Univ., Cambridge (1993), Report No. SUNYSB-AMS-93-21 State Univ. of New York at Stony Brook

    Google Scholar 

  19. Holmes, R., Grove, J. W., Sharp, D. H., Numerical Investigation of Richtmyer-Meshkov Instability Using Front Tracking. J. Fluid Mech. (To Appear 1995)

    Google Scholar 

  20. LeVeque, R. J., Shyue, K.-M.: Two-dimensional front tracking based on high resolution wave propagation methods: submitted to J. Comput. Phys.

    Google Scholar 

  21. Mao, D.-K.: A treatment of discontinuities for finite difference methods in the two-dimensional case. J. Comp. Phys. 104 (1993) 377–397

    Google Scholar 

  22. Moretti, G.: Thoughts and Afterthoughts About Shock Computations. Rep. No. PIBAL-72-37, Polytechnic Institute of Brooklyn, 1972

    Google Scholar 

  23. Moretti, G.: Computations of Flows with Shocks. Ann Rev Fluid Mech, 19 (1987), 313–337

    Google Scholar 

  24. Moretti, G., Grossman, B., Marconi, F.: A Complete Numerical Technique for the Calculation of Three Dimensional Inviscid Supersonic Flow. American Institute for Aeronautics and Astronautics, Rep. No. 72-192, (1972)

    Google Scholar 

  25. Richtmyer, R., Morton, K.: Difference Methods for Initial Value Problems. Interscience, New York, 1967

    Google Scholar 

  26. Zhu, Y.-L., Chen, B.-M., Wu, X.-H., Xu, Q.-S.: Some New Developments of the Singularity-Separating Difference Method. Lecture Notes in Physics, Springer-Verlag, Heidelberg 170 (1982)

    Google Scholar 

  27. Zhu, Y.-L., Chen, B.-M.: A Numerical Method with High Accuracy for Calculating the Interactions between Discontinuities in Three Independent Variables. Scientia Sinica 23 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jack Dongarra Kaj Madsen Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glimm, J., Grove, J., Li, X.L., Young, R., Zeng, Y., Zhang, Q. (1996). Front tracking: A parallelized approach for internal boundaries and interfaces. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds) Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science. PARA 1995. Lecture Notes in Computer Science, vol 1041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60902-4_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-60902-4_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60902-5

  • Online ISBN: 978-3-540-49670-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics