Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The action of a few random permutations on r-tuples and an application to cryptography

  • Conference paper
  • First Online:
STACS 96 (STACS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1046))

Included in the following conference series:

  • 163 Accesses

Abstract

We prove that for every r and d≥2 there is a C such that for most choices of d permutations π 1, π2, ..., πd of S n , a product of less than C log n of these permutations is needed to map any r-tuple of distinct integers to another r-tuple. We came across this problem while studying a seemingly unrelated cryptographic problem, and use this result in order to show that certain cryptographic devices using permutation automata are highly insecure. The proof techniques we develop here give more general results, and constitute a first step towards the study of expansion properties of random Cayley graphs over the symmetric group, whose relevance to theoretical computer science is well-known (see [B&al90]).

Partially supported by Univ. of British Columbia.

Research supported in part by a CNET grant and a NSERC Postdoctoral Fellowship. This author enjoyed the hospitality of the University of British Colombia (Vancouver, Canada) while part of this research was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Ajtai, J. Komlòs, E. Szemerédi, “Sorting in c log n parallel steps”, Combinatorica 3 (1983), 1–19.

    Google Scholar 

  2. D. Angluin. “On the complexity of minimum inference of regular sets”, Information and Control 39 (1978), 302–320.

    Google Scholar 

  3. D. Angluin and C.H. Smith. “Inductive inference, theory and methods”, Computing Surveys 15(3) (1983), 237–269.

    Article  Google Scholar 

  4. N. Alon and V.D. Milman. “gl1, isoperimetric inequalities for graphs and superconcentrators”, J. Comb. Theory, Ser. B, 38, (1985), 73–88.

    Google Scholar 

  5. L. Babai. “Transparent proofs and limits to approximation”, preprint, (1994).

    Google Scholar 

  6. L. Babai, G. Hetyei, W.M. Kantor, A. Lubotzky, A. Seres. “On the diameter of finite groups”, 31st annual Symposium on Foundations of Computer Science, (1990), 857–865.

    Google Scholar 

  7. M. Bellare, O. Goldreich, S. Goldwasser. “Randomness in interactive proofs”, 31st Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1990), 563–572.

    Google Scholar 

  8. B. Bollobas. Random Graphs, Academic Press, London (1985).

    Google Scholar 

  9. B. Bollobas. “The isoperimetric number of random regular graphs”, Europ. J. Combinatorics 9 (1988), 241–244.

    Google Scholar 

  10. B. Bollobas and W. F. de la Vega. “The diameter of random-regular graphs”, Combinatorica, 2, (1982), 125–134.

    Google Scholar 

  11. A. Broder, E. Shamir. “On the second eigenvalue of random regular graphs”, 28th annual Symposium on Foundations of Computer Science, (1987), 286–284.

    Google Scholar 

  12. C. Delorme. “Counting closed paths in trees”, Technical Report n.516, University of Paris-Sud, Laboratoire de recherche en informatique Orsay, September 1989 (in French).

    Google Scholar 

  13. J. Fill. “Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains with an application to the exclusion processes” Ann. Appl. Prob. 1, (1991), 62–87.

    Google Scholar 

  14. Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R.E. Schapire and L. Sellie. “Efficient learning of typical finite automata from random walks”, 25th ACM Symposium on the Theory of Computing (1993), 315–324.

    Google Scholar 

  15. J. Friedman,A. Joux,Y. Roichman,J. Stern,J.P. Tillich. “The action of a few permutations on r-tuples is quickly transitive”, submitted.

    Google Scholar 

  16. J. Friedman. “On the second eigenvalue and random walks in random d-regular graphs”, Combinatorica 11 (4) (1991), 331–362.

    Article  Google Scholar 

  17. J. Friedman, J. Kahn, E. Szemeredi. “On the second eigenvalue in random regular graphs”, 21st annual Symposium on Theory of Computing, ACM press, (1989), 587–598.

    Google Scholar 

  18. E.M. Gold. “Complexity of automaton identification from given data”, Information and Control 37 (1978), 302–320.

    Article  Google Scholar 

  19. O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesen, D. Zuckerman. “Security preserving amplification of randomness”, 31st Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1990), 318–326.

    Google Scholar 

  20. R. Impagliazzo, D. Zuckerman. “How to recycle random bits”, 30th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, (1989), 248–253.

    Google Scholar 

  21. A. Joux, J. Stern, J.P. Tillich. “Inferring finite automata by queries of fixed length”, Preprint.

    Google Scholar 

  22. N. Kahale. “Better expansions for Ramanujan graphs”, 32nd Annual Symposium on Foundations of Computer Science (1991), 398–404.

    Google Scholar 

  23. N. Kahale. “On the second eigenvalue and linear expansion of regular graphs”, 33rd Annual Symposium on Foundations of Computer Science (1992), 296–303.

    Google Scholar 

  24. J. Lafferty, D. Rockmore. “Fast Fourier analysis for SL 2 over a finite field, and related numerical experiments”, Experimental Mathematics 1, (1992), 115–139.

    Google Scholar 

  25. A. Lubotzky. Discrete groups, expanding graphs and invariant measures, Progress in Mathematics, Vol. 125, Birkhäuser 1994.

    Google Scholar 

  26. A. Lubotzky. “Cayley graphs: eigenvalues, expanders and random walks”, to appear in Survey in Combinatorics, 1995.

    Google Scholar 

  27. B. McKay. “The expected eigenvalue distribution of a large regular graph”, Linear Algebra and its Applications, 40, (1981), 203–216.

    Article  Google Scholar 

  28. M. Mihail. “Conductance and convergence of Markov chains—a combinatorial treatment of expanders”, Proceedings of the 30th Annual Symposium on Foundations of Computer Science, 1989.

    Google Scholar 

  29. B. Mohar. “Isoperimetric number of graphs”, Journal of Comb. Theory (B) (1989), 274–291.

    Article  Google Scholar 

  30. N. Pippenger. “Superconcentrators”, SIAM J. Comput., 6, (1977), 298–304.

    Article  Google Scholar 

  31. R.L. Rivest and R.E. Schapire. “Diversity based inference of finite automata” Proceedings of the 28th Annual Symposium on the Foundations of Computer Science (1987), 78–87.

    Google Scholar 

  32. R.L. Rivest and R.E. Schapire. “Inference of finite automata using homing sequences” Proceedings of the 21st ACM Symposium on the Theory of Computing (1989), 411–420.

    Google Scholar 

  33. R.M. Tanner. “Explicit constructions of concentrators from generalized N-gons”, SIAM J. Alg. Disc. Meth., 5, (1984), 287–293.

    Google Scholar 

  34. J.P. Tillich, G. Zémor. “Group-theoretic hash functions”, Proceedings of the 1st French-Israeli Workshop in algebraic coding 1993, Springer Verlag, Lecture Notes 781, 90–110.

    Google Scholar 

  35. J.P. Tillich, G. Zémor. “Hashing with SL2”, Advances in Cryptology, Proceedings of CRYPTO94, Springer Verlag, Lecture Notes 839, 40–49.

    Google Scholar 

  36. U. Vazirani. “Rapidly mixing markov chains”, Proceedings of Symposia in Applied Mathematics, Volume 44, (1991), 99–121.

    Google Scholar 

  37. G. Zémor. “Hash Functions and Cayley graphs”, to appear in Design, Codes and Cryptography, of October 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Claude Puech Rüdiger Reischuk

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedman, J., Joux, A., Roichman, Y., Stern, J., Tillich, J.P. (1996). The action of a few random permutations on r-tuples and an application to cryptography. In: Puech, C., Reischuk, R. (eds) STACS 96. STACS 1996. Lecture Notes in Computer Science, vol 1046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60922-9_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-60922-9_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60922-3

  • Online ISBN: 978-3-540-49723-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics