Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Air Traffic conflict resolution by Genetic Algorithms

  • Conference paper
  • First Online:
Artificial Evolution (AE 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1063))

Included in the following conference series:

  • 180 Accesses

Abstract

The resolution of Air Traffic Control (ATC) conflicts is a constrained optimization problem: the goal is to propose, for a certain number, n, of aircraft, which might be in conflict in a near future, trajectories that satisfy the separation constraints between aircraft, and minimizes the delays due to the conflict's resolution. The type of conflict resolution trajectories we use allows to split the problem in two steps: first we choose, and freeze, what we call a configuration of the problem, i.e. for each aircraft, the direction in which the aircraft is diverted, and for each pair of aircraft, which of the two aircraft passes first at the crossing point of the two aircraft trajectories. We can then compute the optimal trajectories corresponding to this configuration, by solving a simple linear optimization problem. Thus we can use an Genetic Algorithm, along with a linear optimization algorithm, such as the simplex algorithm: the elements of the population, on which the GA operates, code configurations of the problem, and are evaluated using a linear optimization program.The advantage of this approach is that we get, as well as the fitness of an element of the population, the local optima corresponding to the configuration coded by this element. The GA actually searches for the global optimum among these local optima. We applied this methods to conflicts in which up to 6 aircraft are involved, and obtained really promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jean-Marc Alliot, Hervé Gruber, and Marc Schoenauer. Using genetic algorithms for solving ATC conflicts. In Proceedings of the Ninth IEEE Conference on Artificial Intelligence Application. IEEE, 1993.

    Google Scholar 

  2. Luc Angerand and Hervé LeJeannic. Bilan du projet SAINTEX. Technical report, CENA, 1992. CENA/R92009.

    Google Scholar 

  3. Nicolas Durand, Nicolas Alech, Jean-Marc Alliot, and Marc Schoenauer. Genetic algorithms for optimal air traffic conflict resolution. In Submitted to the Second Singapore Conference on Intelligent Systems. SPICIS, 1994.

    Google Scholar 

  4. Daniel Delahaye, Jean-Marc Alliot, Marc Schoenauer, and Jean-Loup Farges. Genetic algorithms for partitioning airspace. In Proceedings of the Tenth Conference on Artificial Intelligence Application. CAIA, 1994.

    Google Scholar 

  5. Daniel Delahaye, Jean-Marc Alliot, Marc Schoenauer, and Jean-Loup Farges. Genetic algorithms for air traffic assignment. In Proceedings of the EuropeanConference on Artificial Intelligence. ECAI, 1994.

    Google Scholar 

  6. Daniel Delahaye, Nicolas Durand, Jean-Marc Alliot, and Marc Schoenauer. Genetic algorithms for air traffic control system. soumis à IEEE Expert '94, 1994.

    Google Scholar 

  7. Nicolas Durand. Modélisation des trajectoires d'évitement pour la résolution de conflits en route. Technical report, Centre d'Etudes de la Navigation Aérienne, Février 1994.

    Google Scholar 

  8. Xavier Fron, Bernard Maudry, and Jean-Claude Tumelin. Arc 2000: Automatic radar control. Technical report, Eurocontrol, 1993.

    Google Scholar 

  9. David Goldberg. Genetic Algorithms. Addison Wesley, 1989. ISBN: 0-201-15767-5.

    Google Scholar 

  10. Noel Germay and Xiaodong Yin. A fast genetic algorithm with sharing scheme using cluster analysis methods in multimodal function optimization. Technical report, Université Catholique de Louvain, Laboratoire d'Electronique et d'Instrumentation.

    Google Scholar 

  11. Fred Krella et al. Arc 2000 scenario (version 4.3). Technical report, Eurocontrol, April 1989.

    Google Scholar 

  12. Frédéric Medioni. Algorithmes génétiques et programmation linéaire appliqués à la résolution de conflits aériens. Mémoire de dea, Ecole Polytechnique, Ecole Nationale de l'Aviation Civile, Juillet 1994.

    Google Scholar 

  13. Samir W. Mahfoud and David E. Goldberg. Parallel recombinative simulated annealing: a genetic algorithm. IlliGAL Report 92002, University of Illinois at Urbana-Champaign, 104 South Mathews Avenue Urbana IL 61801, April 1992.

    Google Scholar 

  14. Zbigniew Michalewiicz. Genetic algorithms + data structures = evolution programs. Springer-Verlag, 1992. ISBN: 0-387-55387.

    Google Scholar 

  15. W.P. Niedringhaus, I. Frolow, J.C. Corbin, A.H. Gisch, N.J. Taber, and F.H. Leiber. Automated En Route Air Traffic Control Algorithmic Specifications: Flight Plan Conflict Probe. Technical report, FAA, 1983. DOT/FAA/ES-83/6.

    Google Scholar 

  16. W.P. Niedringhaus. Automated planning function for AERA3: Manoeuver Option Manager. Technical report, FAA, 1989. DOT/FAA/DS-89/21.

    Google Scholar 

  17. W.P. Niedringhaus. A mathematical formulation for planning automated aircraft separation for AERA3. Technical report, FAA, 1989. DOT/FAA/DS-89/20.

    Google Scholar 

  18. W. Orchard-Hays. Advanced Linear Programming Computing Techniques. McGraw-Hill, 1968.

    Google Scholar 

  19. Karim Zeghal. Techniques réactives pour l'évitement. Technical report, ONERA, June 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-Marc Alliot Evelyne Lutton Edmund Ronald Marc Schoenauer Dominique Snyers

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Médioni, F., Durand, N., Alliot, J.M. (1996). Air Traffic conflict resolution by Genetic Algorithms. In: Alliot, JM., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds) Artificial Evolution. AE 1995. Lecture Notes in Computer Science, vol 1063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61108-8_51

Download citation

  • DOI: https://doi.org/10.1007/3-540-61108-8_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61108-0

  • Online ISBN: 978-3-540-49948-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics