Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On sparse parity check matrices (extended abstract)

  • Session 2
  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1090))

Included in the following conference series:

  • 163 Accesses

Abstract

We consider the extremal problem to determine the maximal number N(m, k, r) of columns of a 0–1 matrix with m rows and at most r ones in each column such that each k columns are linearly independent modulo 2. For fixed integers k ≥ 2 and r ≥ 1, we show the probabilistic lower bound N(m, k, r) = Ω(m kr/2(k−1)); for k a power of 2, we prove the upper bound N(m, k, r) = O(n [kr/(k−1)]/2), which matches the lower bound for infinitely many values of r. We give some explicit constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Aigner, Kombinatorik, Vol. I, Springer, Berlin, 1975.

    Google Scholar 

  2. N. Alon, O. Goldreich, J. Håstad and R. Peralta, Simple Constructions of Almost k-wise Independent Random Variables, Random Structures & Algorithms 3, 1992, 289–304. Addendum: Random Structures & Algorithms 4, 1993, 119–120.

    Google Scholar 

  3. N. Alon and J. Spencer, The Probabilistic Method, Wiley & Sons, New York, 1992.

    Google Scholar 

  4. C. T. Benson, Minimal Regular Graphs of Girth Eight and Twelve, Canad. J. Math. 18, 1966, 1091–1094.

    Google Scholar 

  5. A. Bondy and M. Simonovits, Cycles of Even Length in Graphs, J. Comb. Th. Ser. B 16, 1974, 97–105.

    Google Scholar 

  6. W. G. Brown, On Graphs that do not Contain a Thomsen Graph, Canad. Math. Bull. 9, 1966, 281–289.

    Google Scholar 

  7. N. Calkin, Dependent Sets of Constant Weight Binary Vectors, preprint, 1995.

    Google Scholar 

  8. P. Erdös, On Sequences of Integers no One of which Divides the Product of Two Others and some Related Problems, Izvestiya Nauchno-Issl. Inst. Mat. i Meh. Tomsk 2, 1938, 74–82. Mitteilungen des Forschungsinstitutes für Math. und Mechanik, Tomsk, in Zentralblatt 20, 5.

    Google Scholar 

  9. P. Erdös, Graph Theory and Probability, Canad. J. Math. 11, 1959, 34–38.

    Google Scholar 

  10. P. Erdös, A. Rényi and V. T. Sós, On a Problem of Graph Theory, Stud. Sci. Math. Hung, 1, 1966, 215–235.

    Google Scholar 

  11. P. Frankl and Z. Füredi, Union-Free Families of Sets and Equations over Fields, J. Numb. Th. 23, 1986, 210–218.

    Google Scholar 

  12. Z. Füredi, Turán Type Problems, Surveys in Combinatorics, London Math. Soc. LNS 166, Cambridge University Press, 1991, 253–300.

    Google Scholar 

  13. F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, A New Series of Dense Graphs of High Girth, Bull. Amer. Math. Soc. 32, 1995, 73–79.

    Google Scholar 

  14. A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan Graphs, Combinatorica 8, 1988, 261–277.

    Google Scholar 

  15. G. A. Margulis, Explicit Group Theoretical Construction of Combinatorial Schemes and Their Application to the Design of Expanders and Concentrators, J. Probl. Inf. Transm. 24, 1988, 39–46.

    Google Scholar 

  16. M. Sipser and D. A. Spielman, Expander Codes, Proc. 35-th FOCS, 1994, 566–576. 221–228.

    Google Scholar 

  17. D. A. Spielman, Linear-time Encodable and Decodable Error-correcting Codes, Proc. 27-th STOC, 1995, 388–397.

    Google Scholar 

  18. R. Wenger, Extremal Graphs with no C4's, C6's or C10's, J. Comb. Th. Ser. B 52, 1991, 113–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai Chak Kuen Wong

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lefmann, H., Pudlák, P., Savický, P. (1996). On sparse parity check matrices (extended abstract). In: Cai, JY., Wong, C.K. (eds) Computing and Combinatorics. COCOON 1996. Lecture Notes in Computer Science, vol 1090. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61332-3_137

Download citation

  • DOI: https://doi.org/10.1007/3-540-61332-3_137

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61332-9

  • Online ISBN: 978-3-540-68461-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics