Abstract
We consider the extremal problem to determine the maximal number N(m, k, r) of columns of a 0–1 matrix with m rows and at most r ones in each column such that each k columns are linearly independent modulo 2. For fixed integers k ≥ 2 and r ≥ 1, we show the probabilistic lower bound N(m, k, r) = Ω(m kr/2(k−1)); for k a power of 2, we prove the upper bound N(m, k, r) = O(n [kr/(k−1)]/2), which matches the lower bound for infinitely many values of r. We give some explicit constructions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Aigner, Kombinatorik, Vol. I, Springer, Berlin, 1975.
N. Alon, O. Goldreich, J. Håstad and R. Peralta, Simple Constructions of Almost k-wise Independent Random Variables, Random Structures & Algorithms 3, 1992, 289–304. Addendum: Random Structures & Algorithms 4, 1993, 119–120.
N. Alon and J. Spencer, The Probabilistic Method, Wiley & Sons, New York, 1992.
C. T. Benson, Minimal Regular Graphs of Girth Eight and Twelve, Canad. J. Math. 18, 1966, 1091–1094.
A. Bondy and M. Simonovits, Cycles of Even Length in Graphs, J. Comb. Th. Ser. B 16, 1974, 97–105.
W. G. Brown, On Graphs that do not Contain a Thomsen Graph, Canad. Math. Bull. 9, 1966, 281–289.
N. Calkin, Dependent Sets of Constant Weight Binary Vectors, preprint, 1995.
P. Erdös, On Sequences of Integers no One of which Divides the Product of Two Others and some Related Problems, Izvestiya Nauchno-Issl. Inst. Mat. i Meh. Tomsk 2, 1938, 74–82. Mitteilungen des Forschungsinstitutes für Math. und Mechanik, Tomsk, in Zentralblatt 20, 5.
P. Erdös, Graph Theory and Probability, Canad. J. Math. 11, 1959, 34–38.
P. Erdös, A. Rényi and V. T. Sós, On a Problem of Graph Theory, Stud. Sci. Math. Hung, 1, 1966, 215–235.
P. Frankl and Z. Füredi, Union-Free Families of Sets and Equations over Fields, J. Numb. Th. 23, 1986, 210–218.
Z. Füredi, Turán Type Problems, Surveys in Combinatorics, London Math. Soc. LNS 166, Cambridge University Press, 1991, 253–300.
F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, A New Series of Dense Graphs of High Girth, Bull. Amer. Math. Soc. 32, 1995, 73–79.
A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan Graphs, Combinatorica 8, 1988, 261–277.
G. A. Margulis, Explicit Group Theoretical Construction of Combinatorial Schemes and Their Application to the Design of Expanders and Concentrators, J. Probl. Inf. Transm. 24, 1988, 39–46.
M. Sipser and D. A. Spielman, Expander Codes, Proc. 35-th FOCS, 1994, 566–576. 221–228.
D. A. Spielman, Linear-time Encodable and Decodable Error-correcting Codes, Proc. 27-th STOC, 1995, 388–397.
R. Wenger, Extremal Graphs with no C4's, C6's or C10's, J. Comb. Th. Ser. B 52, 1991, 113–116.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lefmann, H., Pudlák, P., Savický, P. (1996). On sparse parity check matrices (extended abstract). In: Cai, JY., Wong, C.K. (eds) Computing and Combinatorics. COCOON 1996. Lecture Notes in Computer Science, vol 1090. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61332-3_137
Download citation
DOI: https://doi.org/10.1007/3-540-61332-3_137
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61332-9
Online ISBN: 978-3-540-68461-9
eBook Packages: Springer Book Archive