Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel implementation of a symmetric eigensolver based on the Yau and Lu method

  • Conference paper
  • First Online:
Vector and Parallel Processing — VECPAR'96 (VECPAR 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1215))

Included in the following conference series:

Abstract

In this paper, we present preliminary results on a complete eigensolver based on the Yau and Lu method. We first give an overview of this invariant subspace decomposition method for dense symmetric matrices followed by numerical results and work in progress of a distributed-memory implementation. We expect that the algorithm's heavy reliance on matrix-matrix multiplication, coupled with FFT should yield a highly parallelizable algorithm. We present performance results for the dominant computation kernel on the Intel Paragon.

This work is partly supported by the European project KIT 108 and Eureka Euro-TOPS project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Anderson, Z. Bai, C. H. Bischof, J. W. Demmel, J. J. Dongarra, J. J. Du Croz. A. Greenbaum, S. J. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. LAPACK Users' Guide, Release 2.0. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 1995.

    Google Scholar 

  2. Christian Bischof, William George, Steven Huss-Lederman, Xiaobai Sun, Anna Tsao, and Thomas Turnbull. SYISDA users' guide, Version 2.0. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA, 1995.

    Google Scholar 

  3. Christian Bischof, Steven Huss-Lederman, Xiaobai Sun, Anna Tsao, and Thomas Turnbull. Parallel performance of a symmetric eigensolver based on the invariant subspace decomposition approach. In proceedings of Scalable High Performance Computing Conference'94, Knoxville, Tennessee, pages 32–39, May 1994. (also PRISM Working Note #15.

    Google Scholar 

  4. Jaeyoung Choi, James Demmel, I. Dhillon, Jack J. Dongarra, Susan Ostrouchov, Antoine P. Petitet, K. Stanley, David W. Walker, and R. Clint Whaley. ScaLA-PACK: A portable linear algebra library for distributed memory computers — design issues and performances. LAPACK Working Note 95, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1995.

    Google Scholar 

  5. Jaeyoung Choi, Jack J. Dongarra, Roldan Pozo, and David W. Walker. ScaLA-PACK: A scalable linear algebra library for distributed memory concurrent computers. Technical Report CS-92-181, Department of Computer Science, University of Tennessee, Knoxville, TN, USA, November 1992. LAPACK Working Note 55.

    Google Scholar 

  6. C.W. Cooley and J.W. Tuckey. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput., 19:297–301, 1965.

    Google Scholar 

  7. J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math., 36:177–195, 1981.

    Google Scholar 

  8. James W. Demmel and K. Stanley. The performance of finding eigenvalues and eigenvectors of dense symmetric matrices on distributed memory computers. Technical Report CS-94-254, Department of Computer Science, University of Tennessee, Knoxville, TN, USA, September 1994. LAPACK Working Note 86.

    Google Scholar 

  9. J. Dongarra and D. Sorensen. A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput., 8:139–154, 1987.

    Google Scholar 

  10. D. Giménez, R. van de Geijn, V. Hernández, and A. M. Vidal. Exploiting the symmetry on the jacobi method on a mesh of processors. In 4th EUROMICRO Worshop on Parallel and Distributed Processing, Braga, Portugal, 1996.

    Google Scholar 

  11. Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, USA, second edition, 1989.

    Google Scholar 

  12. C. Lin and L.Snyder. A matrix product algorithm and its comparative performance on hypercubes. In Scalable High Performance Computing Conference SHPCC92, pages 190–193. IEEE Computer Society, 1992.

    Google Scholar 

  13. Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ, USA, 1980.

    Google Scholar 

  14. Makan Pourzandi and Françoise Tisseur. Parallèlisation d'une nouvelle méthode de recherche de valeurs propres pour des matrices réelles symétriques. Report TR94-37, LIP, ENS Lyon, 1994.

    Google Scholar 

  15. Oscar Rojo and Ricardo L. Soto. A decreasing sequence of eigenvalue localization regions. Linear Algebra and Appl., 196:71–84, 1994.

    Google Scholar 

  16. Shing-Tung Yau and Ya Yan Lu. Reducing the symmetric matrix eigenvalue problem to matrix multiplications. SIAM J. Sci. Comput., 14(1):121–136, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José M. L. M. Palma Jack Dongarra

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domas, S., Tisseur, F. (1997). Parallel implementation of a symmetric eigensolver based on the Yau and Lu method. In: Palma, J.M.L.M., Dongarra, J. (eds) Vector and Parallel Processing — VECPAR'96. VECPAR 1996. Lecture Notes in Computer Science, vol 1215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62828-2_117

Download citation

  • DOI: https://doi.org/10.1007/3-540-62828-2_117

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62828-6

  • Online ISBN: 978-3-540-68699-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics