Abstract
In this paper, we present preliminary results on a complete eigensolver based on the Yau and Lu method. We first give an overview of this invariant subspace decomposition method for dense symmetric matrices followed by numerical results and work in progress of a distributed-memory implementation. We expect that the algorithm's heavy reliance on matrix-matrix multiplication, coupled with FFT should yield a highly parallelizable algorithm. We present performance results for the dominant computation kernel on the Intel Paragon.
This work is partly supported by the European project KIT 108 and Eureka Euro-TOPS project.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Anderson, Z. Bai, C. H. Bischof, J. W. Demmel, J. J. Dongarra, J. J. Du Croz. A. Greenbaum, S. J. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen. LAPACK Users' Guide, Release 2.0. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 1995.
Christian Bischof, William George, Steven Huss-Lederman, Xiaobai Sun, Anna Tsao, and Thomas Turnbull. SYISDA users' guide, Version 2.0. Technical report, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA, 1995.
Christian Bischof, Steven Huss-Lederman, Xiaobai Sun, Anna Tsao, and Thomas Turnbull. Parallel performance of a symmetric eigensolver based on the invariant subspace decomposition approach. In proceedings of Scalable High Performance Computing Conference'94, Knoxville, Tennessee, pages 32–39, May 1994. (also PRISM Working Note #15.
Jaeyoung Choi, James Demmel, I. Dhillon, Jack J. Dongarra, Susan Ostrouchov, Antoine P. Petitet, K. Stanley, David W. Walker, and R. Clint Whaley. ScaLA-PACK: A portable linear algebra library for distributed memory computers — design issues and performances. LAPACK Working Note 95, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1995.
Jaeyoung Choi, Jack J. Dongarra, Roldan Pozo, and David W. Walker. ScaLA-PACK: A scalable linear algebra library for distributed memory concurrent computers. Technical Report CS-92-181, Department of Computer Science, University of Tennessee, Knoxville, TN, USA, November 1992. LAPACK Working Note 55.
C.W. Cooley and J.W. Tuckey. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput., 19:297–301, 1965.
J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math., 36:177–195, 1981.
James W. Demmel and K. Stanley. The performance of finding eigenvalues and eigenvectors of dense symmetric matrices on distributed memory computers. Technical Report CS-94-254, Department of Computer Science, University of Tennessee, Knoxville, TN, USA, September 1994. LAPACK Working Note 86.
J. Dongarra and D. Sorensen. A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput., 8:139–154, 1987.
D. Giménez, R. van de Geijn, V. Hernández, and A. M. Vidal. Exploiting the symmetry on the jacobi method on a mesh of processors. In 4th EUROMICRO Worshop on Parallel and Distributed Processing, Braga, Portugal, 1996.
Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, USA, second edition, 1989.
C. Lin and L.Snyder. A matrix product algorithm and its comparative performance on hypercubes. In Scalable High Performance Computing Conference SHPCC92, pages 190–193. IEEE Computer Society, 1992.
Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ, USA, 1980.
Makan Pourzandi and Françoise Tisseur. Parallèlisation d'une nouvelle méthode de recherche de valeurs propres pour des matrices réelles symétriques. Report TR94-37, LIP, ENS Lyon, 1994.
Oscar Rojo and Ricardo L. Soto. A decreasing sequence of eigenvalue localization regions. Linear Algebra and Appl., 196:71–84, 1994.
Shing-Tung Yau and Ya Yan Lu. Reducing the symmetric matrix eigenvalue problem to matrix multiplications. SIAM J. Sci. Comput., 14(1):121–136, 1993.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Domas, S., Tisseur, F. (1997). Parallel implementation of a symmetric eigensolver based on the Yau and Lu method. In: Palma, J.M.L.M., Dongarra, J. (eds) Vector and Parallel Processing — VECPAR'96. VECPAR 1996. Lecture Notes in Computer Science, vol 1215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62828-2_117
Download citation
DOI: https://doi.org/10.1007/3-540-62828-2_117
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62828-6
Online ISBN: 978-3-540-68699-6
eBook Packages: Springer Book Archive