Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Preconditioned conjugate gradient methods for semiconductor device simulation on a CRAY C90 vector processor

  • Conference paper
  • First Online:
Vector and Parallel Processing — VECPAR'96 (VECPAR 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1215))

Included in the following conference series:

  • 120 Accesses

Abstract

The finite difference discretization of the semiconductor equations yields symmetric, positive definite block-tridiagonal linear systems, which can be solved efficiently by the conjugate gradient method (CG). We have investigated several preconditioners with respect to vectorization to improve the simulation runtime. The performance of the different strategies has been evaluated on a CRAY C90 vector processor. We have found, that diagonal scaling can hardly be improved by additional incomplete Cholesky and polynomial preconditioners, because the reduction in the total number of iterations is usually compensated by the increased complexity of the preconditioned CG iteration. However, if the CG method is embedded in a nonlinear outer iteration, runtime savings have been obtained in some cases, because the preconditioned algorithms have produced a stable outer iteration with less stringent stopping criteria for the inner CG iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ashby, S. F., Manteuffel, T. A., Otto, J. S., A Comparison of Adaptive Chebyshev and Least Squares Polynomial Preconditioning for Hermitian Positive Definite Linear Systems, SIAM J. Sci. Stat. Comput., 13, 1–29, 1992

    Google Scholar 

  2. Fischer, B., Freund, R. W., On Adaptive Weighted Polynomial Preconditioning For Hermitian Positive Definite Matrices. SIAM J. Sci. Comput., 15, pp. 408–426, 1994

    Google Scholar 

  3. Golub, G., Ortega, J. M.. Scientific Computing — An Introduction With Parallel Computing, Academic Press, Boston, Mass., 1993

    Google Scholar 

  4. Greenbaum, A., Rodrigue, G. H., The Incomplete Cholesky Conjugate Gradient for the STAR (5-point) Operator, Rep. UCID 17574, Lawrence Livermore National Laboratory, Livermore California, 1977.

    Google Scholar 

  5. Gummel, H. K., A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations, IEEE Trans. Electron Devices, 11, pp. 455–465, 1964.

    Google Scholar 

  6. Jordan, T. L., Conjugate Gradient Preconditioners for Vector and Parallel Processors, in: Birkhoff, G., Schoenstadt, A. (editors), Elliptic Problem Solvers II, Academic Press, Orlando, 1984.

    Google Scholar 

  7. Oed, W., Cray Y-MP C90: System features and early benchmark results, Parallel Computing, 18, pp. 947–954, 1992.

    Google Scholar 

  8. Ruggiero, V., Polynomial Preconditioning on Vector Computers, Applied Mathematics and Computation, 59, 131–150, 1993.

    Google Scholar 

  9. Saad, Y., Practical use of polynomial preconditionings for the conjugate gradient method, SIAM J. Sci. Stat. Comput., 6, pp. 865–881, 1985.

    Google Scholar 

  10. Saad, Y., Krylov subspace methods on supercomputers, SIAM J. Sci. Stat. Comput., 10, pp. 1200–1232, 1989.

    Google Scholar 

  11. Scharfetter, D. L., Gummel, H. K., Large-Signal Analysis of a Silicon Read Diode Oscillator, IEEE Trans. Electron Devices, 16, pp. 64–77, 1969.

    Google Scholar 

  12. Selberherr, S., Analysis and simulation of semiconductor devices, Springer, Wien, 1984

    Google Scholar 

  13. Slotboom, J. W., Iterative Scheme for 1-and 2-Dimensional D.C.-Transistor Simulation, Electronics Letters, 5, pp. 677–678, 1969.

    Google Scholar 

  14. Van Der Vorst, H. A., A vectorizable version of some ICCC methods, SIAM J. Sci. Stat. Comput., 3, pp. 350–356, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José M. L. M. Palma Jack Dongarra

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thomas, S. (1997). Preconditioned conjugate gradient methods for semiconductor device simulation on a CRAY C90 vector processor. In: Palma, J.M.L.M., Dongarra, J. (eds) Vector and Parallel Processing — VECPAR'96. VECPAR 1996. Lecture Notes in Computer Science, vol 1215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62828-2_118

Download citation

  • DOI: https://doi.org/10.1007/3-540-62828-2_118

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62828-6

  • Online ISBN: 978-3-540-68699-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics