Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bisimulation for probabilistic transition systems: A coalgebraic approach

  • Session 12:Process Equivalences
  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1256))

Included in the following conference series:

Abstract

The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendier in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes 14. Center for the Study of Languages and Information, Stanford, 1988.

    Google Scholar 

  2. P. Aczel and N. Mendier. A final coalgebra theorem. In D.H. Pitt et al., editors, Proc. Category Theory and Computer Science, pages 357–365. LNCS 389, 1989.

    Google Scholar 

  3. P. America and J.J.M.M. Rutten. Solving reflexive domain equations in a category of complete metric spaces. Journal of Computer Systems and Sciences, 39:343–375, 1989.

    Article  Google Scholar 

  4. M. Barr. Terminal coalgebras in well-founded set theory. Theoretical Computer Science, 114:299–315, 1993. See also the addendum in Theoretical Computer Science, 124:189-192, 1994.

    Article  Google Scholar 

  5. R. Blute, J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov processes. In Proc. LICS'97. Warzaw, 1997.

    Google Scholar 

  6. J.W. de Bakker and E.P. de Vink. Control Flow Semantics. The MIT Press, 1996.

    Google Scholar 

  7. A. Edalat. Domain theory and integration. In Proc. LICS'94, pages 115–124. Paris, 1994.

    Google Scholar 

  8. A. Giacalone, C. Jou, and S.A. Smolka. Algebraic reasoning for probabilisitic concurrent systems. In Proc. Working Conference on Programming Concepts and Methods. IFIP TC2, Sea of Gallilee, 1990.

    Google Scholar 

  9. R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified models of probabilistic processes. Information and Computation, 121:59–80, 1995.

    Google Scholar 

  10. T.A. Henzinger. Hybrid automata with finite bisimulations. In Z. Fülöp and F. Gécseg, editors, Proc. ICALP'95, pages 324–335. LNCS 944, 1995.

    Google Scholar 

  11. B. Jonsson and K.G-. Larsen. Specification and refinement of probabilistic processes. In Proc. LICS'91, pages 266–277. Amsterdam, 1991.

    Google Scholar 

  12. C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Proc. LICS'89, pages 186–195. Asilomar, 1989.

    Google Scholar 

  13. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94:1–28, 1991.

    Article  Google Scholar 

  14. J.J.M.M. Rutten and D. Turi. On the foundations of final semantics: non-standard sets, metric spaces, partial orders. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proc. REX Workshop on Semantics: Foundations and Applications, pages 477–530. LNCS 666, 1993.

    Google Scholar 

  15. J.J.M.M. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proc. REX School/Symposium ‘A Decade of Concurrency', pages 530–582. LNCS 803, 1994.

    Google Scholar 

  16. W. Rudin. Real and Complex Analysis. McGraw-Hill, 1966.

    Google Scholar 

  17. J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Report CSR9652, CWI, 1996. Ftp-available at ftp.cwi.nl as pub/CWIreports/AP/CS-R9652.ps.Z.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierpaolo Degano Roberto Gorrieri Alberto Marchetti-Spaccamela

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Vink, E.P., Rutten, J.J.M.M. (1997). Bisimulation for probabilistic transition systems: A coalgebraic approach. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds) Automata, Languages and Programming. ICALP 1997. Lecture Notes in Computer Science, vol 1256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63165-8_202

Download citation

  • DOI: https://doi.org/10.1007/3-540-63165-8_202

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63165-1

  • Online ISBN: 978-3-540-69194-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics