Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Random sampling of Euler tours

  • Randomness
  • Conference paper
  • First Online:
Randomization and Approximation Techniques in Computer Science (RANDOM 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1269))

  • 200 Accesses

Abstract

We define a Markov chain on the set of Euler tours of a given Eulerian graph based on transformations first defined by Kotzig in 1966. We prove that the chain is rapidly mixing if the maximum degree in the given graph is 6, thus obtaining an efficient algorithm for sampling and counting the set of Euler tours for such an Eulerian graph.

research supported by the NSF Grant No. CCR-9503952

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Abrham and A. Kotzig, Transformations of Euler tours, Annals of Discrete Mathematics 8 (1980), 65–69.

    Google Scholar 

  2. A. Bouchet, k-transformations, local complementations, and Switchings, in Hahn, G., Sabidussi, G., Woodrow, R. (eds.), “Cycles and Rays,” NATO ASI Ser. C, Kluwer Academic Publ. Dordrecht (1990), 41–50.

    Google Scholar 

  3. D. Fon der Flaass, Distance between locally equivalent graphs, Metody Diskretnogo Analiza, Novosibirsk 48(1989), 85–94. [In Russian].

    Google Scholar 

  4. A. Kotzig, Eulerian lines in finite 4-valent graphs and their transformations, in: P. Erdós and G. Katona, Eds., “Theory of Graphs,” Proc. of the Colloq. held at Tihany, Hungary (1966) (Akademiai Kiado, Publishing House of the Hungarian Academy of Sciences, Budapest (1968), 219–230).

    Google Scholar 

  5. B.D. McKay, The asymptotic number of regular tournaments, eulerian digraphs and eulerian oriented graphs, Combinatorica, 10 (1990), 367–377.

    Google Scholar 

  6. B.D. McKay and R. Robinson, Asymptotic enumeration of Eulerian circuits in the complete graph, preprint (1995).

    Google Scholar 

  7. M. Mihail and P. Winkler, On the number of Eulerian orientations of a graph, Proc. of the 3rd ACM-SIAM Symp. on Discrete Algorithms (1992), 138–145.

    Google Scholar 

  8. M.R. Jerrum and A.J. Sinclair, The Markov chain Monte Carlo method, in “Approximation algorithms for NP-hard problems,” D.S. Hochbaum (ed.), PWS Publishing, Boston, 1997.

    Google Scholar 

  9. A.J. Sinclair, “Algorithms for random generation & counting: a Markov chain approach,” Progress in Theoretical Computer Science, Birkhäuser (1992).

    Google Scholar 

  10. L. Lovász, “Combinatorial Problems and Exercises,” 1993 (second edition), North-Holland, Elsevier Science Publishers (Amsterdam) and Akade'miai Kiado' (Budapest).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Rolim

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tetali, P., Vempala, S. (1997). Random sampling of Euler tours. In: Rolim, J. (eds) Randomization and Approximation Techniques in Computer Science. RANDOM 1997. Lecture Notes in Computer Science, vol 1269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63248-4_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-63248-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63248-1

  • Online ISBN: 978-3-540-69247-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics