Abstract
We show a simple and efficient construction of a pseudo- random generator based on the intractability of an NP-complete problem from the area of error-correcting codes. The generator is proved as secure as a hard instance of the syndrome decoding problem. Each application of the scheme generates a linear amount of bits in only quadratic computing time.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Alexi, W., Chor, B., Goldreich, O., Schnorr, C. P.: Rsa and rabin functions: certain parts are as hard as the whole. SIAM J. Computing 17 (1988) 194–209.
Berlekamp, E. R., McEliece, R. J., van Tilborg, H. C. A.:. On the inherent intractability of certain coding problems. In IEEE Trans. Information Theory (1978) IEEE pp. 384–386.
Blum, L., Blum, M., Shub, M.: A simple unpredictible pseudo-random number generator. SIAM J. Computing 15 (1986) 364–383.
Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Computing 13 (1984) 850–863.
Canteaut, A., Chabaud, F.:. A general improvement of the previous attacks on McEliece’s cryptosystem. Unpublished.
Chabaud, F.:. On the security of some cryptosystems based on error-correcting codes. In Advances in Cryptology: Proc. of EUROCRYPT’94 (1994) LNCS Springer-Verlag.
Garey, M. R., Johnson, D. S.:. Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Co 1979.
Goldreich, O.:. Foundations of cryptography (Fragments of a book). Weizmann Institut of Science 1995.
Goldreich, O., Krawczyk, H., Luby, M.:. On the existence of pseudo-random generators. In Proc. 29th Symp. on Foundations of Computing Science (1988) IEEE pp. 12–24.
Goldreich, O., Levin, L. A.:. Hard core predicate for any one-way function. In Proc. 21st Symp. on Theory of Computing (1989) ACM press pp. 25–32.
Guillot, P.:. Algorithmes pour le codage à poids constant. Unpublished.
Håstad, J., Schrift, A. W., Shamir, A.: The discrete logarithm modulo a composite hides o(n) bits. J. of Computing and Systems Science 47 (1993) 376–404.
Impaggliazzo, R., Naor, M.:. Efficient cryptographic schemes provably as secure as subset sum. In Proc. 30th Symp. on Foundations of Computing Science (1989) IEEE pp. 236–241.
Impagliazzo, R., Levin, L. A., Luby, M.:. Pseudo-random generation from any one-way functions. In Proc. 21st Symp. on Theory of Computing (1989) ACM press pp. 12–24.
Levin, L. A.:. One-way functions and pseudo-random generators. In Proc. 21st Symp. on Theory of Computing (1985) ACM pp. 363–365.
Long, D. L., Wigderson, A.: The discrete log hides o(log n) bits. SIAM J. Computing 17 (1988) 363–372.
McWilliams, F. J., Sloane, N. J. A.:. The theory of error-correcting codes. North-Holland 1977.
Micali, S., Schnorr, C. P.:. Efficient, perfect random number generators. In Advances in Cryptology, Proc. of CRYPTO’88 (1988) vol. 576 of LNCS Springer Verlag.
Stern, J.:. A method for finding codewords of small weight. In Lecture Notes in Computer Science, Coding Theory and Applications vol. 388. Springer 1989 pp. 106–113.
Stern, J.:. A new identification scheme based on syndrome decoding. In Advances in Cryptology, Proc. of CRYPTO’93 (1993) vol. 773 of LNCS Springer-Verlag pp. 13–21.
Vazirani, U. V., Vazirani, V. V.:. Efficient and secure pseudo-random sequences from slightly-random sources. In Proc. 25th Symp. on Foundations of Computing Science (1984) IEEE pp. 458–463.
Yao, A. C.:. Theory and application of trapdoor functions. In Proc. 25th Symp. on Foundations of Computing Science (1982) IEEE pp. 80–91.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fischer, JB., Stern, J. (1996). An Efficient Pseudo-Random Generator Provably as Secure as Syndrome Decoding. In: Maurer, U. (eds) Advances in Cryptology — EUROCRYPT ’96. EUROCRYPT 1996. Lecture Notes in Computer Science, vol 1070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68339-9_22
Download citation
DOI: https://doi.org/10.1007/3-540-68339-9_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61186-8
Online ISBN: 978-3-540-68339-1
eBook Packages: Springer Book Archive