Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Complexity Estimates Depending on Condition and Round-Off Error

  • Conference paper
  • First Online:
Algorithms — ESA’ 98 (ESA 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1461))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.L. Allgower and K. Georg. Numerical Continuation Methods. Springer-Verlag, 1990.

    Google Scholar 

  2. J.L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I. EATCS Monographs on Theoretical Computer Science, 11. Springer-Verlag, 1988.

    Google Scholar 

  3. S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic complexity of quantifier elimination. In 35th annual IEEE Symp. on Foundations of Computer Science, pages 632–641, 1994.

    Google Scholar 

  4. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1998.

    Google Scholar 

  5. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the Amer. Math. Soc., 21:1–46, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  6. S.L. Campbell and C.D. Meyer. Generalized Inverses of Linear Transformations. Pitman, 1979.

    Google Scholar 

  7. G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic deccomposition, volume 33 of Lect. Notes in Comp. Sci., pages 134–183. Springer-Verlag, 1975.

    Google Scholar 

  8. F. Cucker and S. Smale. Complexity estimates depending on condition and round-off error. Preprint, 1997.

    Google Scholar 

  9. J.-P. Dedieu and M. Shub. Multihomogeneous Newton methods. Preprint, 1997.

    Google Scholar 

  10. D.Yu. Grigoriev and N.N. Vorobjov. Solving systems of polynomial inequalities in subexponential time. Journal of Symbolic Computation, 5:37–64, 1988.

    Article  MathSciNet  Google Scholar 

  11. J. Heintz, M.-F. Roy, and P. Solerno. Sur la complexité du principe de Tarski-Seidenberg. Bulletin de la Société Mathématique de France, 118:101–126, 1990.

    MATH  MathSciNet  Google Scholar 

  12. N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

    Google Scholar 

  13. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  14. J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. Part I. Journal of Symbolic Computation, 13:255–299, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Shub and S. Smale. Complexity of Bezout’s theorem I: geometric aspects. Journal of the Amer. Math. Soc., 6:459–501, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Shub and S. Smale. Complexity of Bezout’s theorem II: volumes and probabilities. In F. Eyssette and A. Galligo, editors, Computational Algebraic Geometry, volume 109 of Progress in Mathematics, pages 267–285. Birkhäuser, 1993.

    Google Scholar 

  17. M. Shub and S. Smale. Complexity of Bezout’s theorem III: condition number and packing. Journal of Complexity, 9:4–14, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Shub and S. Smale. Complexity of Bezout’s theorem V: polynomial time. Theoretical Computer Science, 133:141–164, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Shub and S. Smale. Complexity of Bezout’s theorem IV: probability of success; extensions. SIAM J. of Numer. Anal., 33:128–148, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Smale. Complexity theory and numerical analysis. In A. Iserles, editor, Acta Numerica, pages 523–551. Cambridge University Press, 1997.

    Google Scholar 

  21. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press, 1951.

    Google Scholar 

  22. L.N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, 1997.

    Google Scholar 

  23. J. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, 1963.

    Google Scholar 

  24. J. Wilkinson. Modern error analyis. SIAM Review, 13:548–568, 1971.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cucker, F., Smale, S. (1998). Complexity Estimates Depending on Condition and Round-Off Error. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds) Algorithms — ESA’ 98. ESA 1998. Lecture Notes in Computer Science, vol 1461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68530-8_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-68530-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64848-2

  • Online ISBN: 978-3-540-68530-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics