Abstract
The Successive Projection Graph Matching (SPGM) algorithm, capable of performing full- and sub-graph matching, is presented in this paper. Projections Onto Convex Sets (POCS) methods have been successfully applied to signal processing applications, image enhancement, neural networks and optics. The SPGM algorithm is unique in the way a constrained cost function is minimized using POCS methodology. Simulation results indicate that the SPGM algorithm compares favorably to other well-known graph matching algorithms.
Chapter PDF
Similar content being viewed by others
Keywords
- Graph Match
- Signal Processing Application
- Algorithm Successive Projection
- Pattern Recognition Letter
- Maximal Common Subgraph
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching, IEEE Trans. Patt. Anal. Machine Intell, Vol. 18 (1996) 377ā388
You, M., Wong, K. C.: An Algorithm for Graph Optimal Isomorphism, Proc. ICPR. (1984) 316ā319
Tsai, W.-H., Fu, K.-S.: Error-Correcting Isomorphisms of Attributed Relation Graphs for Pattern Recognition, IEEE Trans. Syst. Man Cybern., Vol. 9 (1997) 757ā768
Tsai, W.-H., Fu, K.-S.: Subgraph Error-Correcting Isomorphisms for Syntactic Pattern Recognition, IEEE Trans. Systems, Man, Cybernetics, Vol. 13 (1983) 48ā62
Depiero, F., Trived, M., Serbin, S.: Graph Matching using a Direct Classification of Node Attendance, Pattern Recognition, Vol. 29, No. 6, (1996) 1031ā1048
Eshera, M. A., Fu, K.-S.: A Graph Distance measure for Image Analysis, IEEE Trans. Systems, Man, Cybernetics, Vol. 13 (1984) 398ā407
Bunke, H., Shearer, K.: A Graph Distance Metric Based on the Maximal Common Subgraph, Pattern Recognition Letters, Vol. 19 (1998) 255ā259
Bunke, H., Messmer, B.: Recent Advances in Graph Matching, Int. J. Pattern Recognition Artificial Intell. Vol. 11, No. 1 (1997) 169ā203
Allen, R., Cinque, L., Tanimoto, S., Shapiro, L., Yasuda, D.: A Parallel Algorithm for Graph Matching and Its MarPlas Implementation, IEEE Trans. Parallel and Distb. Syst., Vol. 8, No. 5 (1997) 490ā501
Almohamad, H. A. L.: Polynomial Transform for Matching Pairs of Weighted Graphs, Appl. Math. Modelling, Vol. 15, No. 4 (1991) 216ā222
Umeyama, S.: An Eigendecomposition Approach to Weighted Graph Matching Problems, IEEE Trans. Patt. Anal. Machine Intell., Vol. 10, No. 5 (1988) 695ā703
Cross, A. D. J., Wilson, C., Hancock, E. R.: Inexact Matching Using Genetic Search, Pattern Recognition, Vol. 30, No. 6 (1997) 953ā970
Finch, A. M., Wilson, R. C., Hancock, R.: Symbolic Matching with the EM Algorithm, Pattern Recognition, Vol. 31, No. 11 (1998) 1777ā1790
Williams, M. L., Wilson, R. C., Hancock, E. R.: Multiple Graph Matching with Bayesian Inference, Pattern Recognition Letters, Vol. 18 (1997) 1275ā1281
Cross, A. D. J., Hancock, E. R.: Graph Matching with a Dual Step EM Algorithm, IEEE Trans. Patt. Anal. Machine Intell., Vol. 20, No. 11 (1998) 1236ā1253
Wilson, R. C., Hancock, E. R.: A Bayesian Compatibility Model for Graph Matching, Pattern Recognition Letters, Vol. 17 (1996) 263ā276.
Hummel, R. A., Zucker, S. W.: On the Foundations of Relaxation Labelling Processes, IEEE Trans. Patt. Anal. Machine Intell., Vol. 5, No. 3 (1983) 267ā286
Faugeras, O. D., Price, K. E.: Semantic Description of Aerial Images Using Stochastic Labeling, IEEE Trans. Patt. Anal. Machine Intell., Vol. 3, No. 6 (1981) 633ā642
van Wyk, M. A., Clark, J.: An Algorithm for Approximate Least-Squares Attributed Graph Matching, in Problems in Applied Mathematics and Computational Intelligence, N. Mastorakis (ed.), World Science and Engineering Society Press, (2001) 67ā72
van Wyk, B. J., van Wyk, M. A., Virolleau, F.: The CGGM Algorithm and its DSP implementation, Proc. 3rd European DSP Conference on Education and Research, ESIEE-Paris, 20ā21 September (2000)
Stark, H., Yang, Y.: Vector Space Projections: A Numerical Approach to Signal and Image Processing, Neural Nets and Optics., John Wiley and Sons (1998)
Youla, D. C.: Mathematical theory of image restoration by the method of convex projections, Chapter 2, in Image Recovery: Theory and Applications, H. Stark (ed.), Academic Press, Orlando, FL (1987)
Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Wyk, B.J., van Wyk, M.A., Hanrahan, H.E. (2002). Successive Projection Graph Matching. In: Caelli, T., Amin, A., Duin, R.P.W., de Ridder, D., Kamel, M. (eds) Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2002. Lecture Notes in Computer Science, vol 2396. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-70659-3_27
Download citation
DOI: https://doi.org/10.1007/3-540-70659-3_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44011-6
Online ISBN: 978-3-540-70659-5
eBook Packages: Springer Book Archive