Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics

  • Chapter
Adaptive Motion of Animals and Machines

Abstract

Given the continuous stream of movements that biological systems exhibit in their daily activities, an account for such versatility and creativity has to assume that movement sequences consist of segments, executed either in sequence or with partial or complete overlap. Therefore, a fundamental question that has pervaded research in motor control both in artificial and biological systems revolves around identifying movement primitives (a.k.a. units of actions, basis behaviors, motor schemas, etc.). What are the fundamental building blocks that are strung together, adapted to, and created for ever new behaviors? This paper summarizes results that led to the hypothesis of Dynamic Movement Primitives (DMP). DMPs are units of action that are formalized as stable nonlinear attractor systems. They are useful for autonomous robotics as they are highly flexible in creating complex rhythmic (e.g., locomotion) and discrete (e.g., a tennis swing) behaviors that can quickly be adapted to the inevitable perturbations of a dynamically changing, stochastic environment. Moreover, DMPs provide a formal framework that also lends itself to investigations in computational neuroscience. A recent finding that allows creating DMPs with the help of well-understood statistical learning methods has elevated DMPs from a more heuristic to a principled modeling approach. Theoretical insights, evaluations on a humanoid robot, and behavioral and brain imaging data will serve to outline the framework of DMPs for a general approach to motor control in robotics and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Bellman, Dynamic programming. Princeton, N.J.: Princeton University Press, 1957.

    MATH  Google Scholar 

  2. P. Dyer and S. R. McReynolds, The computation and theory of optimal control. New York: Academic Press, 1970.

    MATH  Google Scholar 

  3. G. Tesauro, “Temporal difference learning of backgammon strategy,” in Proceedings of the Ninth International Workshop Machine, D. Sleeman and P. Edwards, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 9–18.

    Google Scholar 

  4. D._P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic Programming. Bellmont, MA: Athena Scientific, 1996.

    MATH  Google Scholar 

  5. R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. Cambridge: MIT Press, 1998.

    Google Scholar 

  6. J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” Transactions of the ASME, vol. 106, pp. 139–156, 1984.

    Google Scholar 

  7. S. Kawamura and N. Fukao, “Interpolation for input torque patterns obtained through learning control,” presented at International Conference on Automation, Robotics and Computer Vision (ICARCV’94), Singapore, Nov., 1994, 1994.

    Google Scholar 

  8. R. A. Schmidt, Motor control and learning. Champaign, Illinois: Human Kinetics, 1988.

    Google Scholar 

  9. M. A. Arbib, “Perceptual structures and distributed motor control,” in Handbook of Physiology, Section 2: The Nervous System Vol. II, Motor Control, Part 1, V. B. Brooks, Ed.: Bethesda, MD: American Physiological Society, 1981, pp. 1449–1480.

    Google Scholar 

  10. R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of Robotics and Automation, vol. 2, pp. 14–23, 1986.

    MathSciNet  Google Scholar 

  11. R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential composition of dynamically dexterous robot behaviors,” International Journal of Robotics Research, vol. 18, pp. 534–555, 1999.

    Article  Google Scholar 

  12. W. Lohmiller and J. J. E. Slotine, “On contraction analysis for nonlinear systems,” Automatica, vol. 6, 1998.

    Google Scholar 

  13. A. I. Selverston, “Are central pattern generators understandable?,” The Behavioral and Brain Sciences, vol. 3, pp. 555–571, 1980.

    Article  Google Scholar 

  14. E. Marder, “Motor pattern generation,” Curr Opin Neurobiol, vol. 10, pp. 691–8., 2000.

    Article  Google Scholar 

  15. M. Raibert, Legged robots that balance. Cambridge, MA: MIT Press, 1986.

    Google Scholar 

  16. G. Taga, Y. Yamaguchi, and H. Shimizu, “Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment,” Biological Cybernetics, vol. 65, pp. 147–159, 1991.

    Article  MATH  Google Scholar 

  17. D. E. Koditschek, “Exact robot navigation by means of potential functions: Some topological considerations,” presented at Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, North Carolina, 1987.

    Google Scholar 

  18. F. A. Mussa-Ivaldi and E. Bizzi, “Learning Newtonian mechanics,” in Selforganization, Computational Maps, and Motor Control, P. Morasso and V. Sanguineti, Eds. Amsterdam: Elsevier, 1997, pp. 491–501.

    Google Scholar 

  19. D. Sternad, M. T. Turvey, and R. C. Schmidt, “Average phase difference theory and 1:1 phase entrainment in interlimb coordination,” Biological Cybernetics, vol. no.67, pp. 223–231, 1992.

    Article  Google Scholar 

  20. J. A. S. Kelso, Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press, 1995.

    Google Scholar 

  21. S. Grossberg, C. Pribe, and M. A. Cohen, “Neural control of interlimb oscillations. I. Human bimanual coordination,” Biol Cybern, vol. 77, pp. 131–40, 1997.

    Article  MATH  Google Scholar 

  22. C. Pribe, S. Grossberg, and M. A. Cohen, “Neural control of interlimb oscillations. II. Biped and quadruped gaits and bifurcations,” Biol Cybern, vol. 77, pp. 141–52, 1997.

    Article  MATH  Google Scholar 

  23. M. T. Turvey, “The challenge of a physical account of action: A personal view,” 1987.

    Google Scholar 

  24. M. Bühler, “Robotic tasks with intermittent dynamics,” Yale University New Haven, 1990.

    Google Scholar 

  25. A. A. Rizzi and D. E. Koditschek, “Further progress in robot juggling: Solvable mirror laws,” presented at IEEE International Conference on Robotics and Automation, San Diego, CA, 1994.

    Google Scholar 

  26. J. F. Kalaska, “What parameters of reaching are encoded by discharges of cortical cells?,” in Motor Control: Concepts and Issues, D. R. Humphrey and H. J. Freund, Eds.: John Wiley & sons, 1991, pp. 307–330.

    Google Scholar 

  27. N. Schweighofer, M. A. Arbib, and M. Kawato, “Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control,” Eur J Neurosci, vol. 10, pp. 86–94, 1998.

    Article  Google Scholar 

  28. N. Schweighofer, J. Spoelstra, M. A. Arbib, and M. Kawato, “Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum,” Eur J Neurosci, vol. 10, pp. 95–105, 1998.

    Article  Google Scholar 

  29. N. A. Bernstein, The control and regulation of movements. London: Pergamon Press, 1967.

    Google Scholar 

  30. J._J. Craig, Introduction to robotics. Reading, MA: Addison-Wesley, 1986.

    Google Scholar 

  31. S. Schaal and D. Sternad, “Programmable pattern generators,” presented at 3rd International Conference on Computational Intelligence in Neuroscience, Research Triangle Park, NC, 1998.

    Google Scholar 

  32. M. Williamson, “Neural control of rhythmic arm movements,” Neural Networks, vol. 11, pp. 1379–1394, 1998.

    Article  Google Scholar 

  33. G. Schöner, “A dynamic theory of coordination of discrete movement,” Biological Cybernetics, vol. 63, pp. 257–270, 1990.

    Article  MathSciNet  Google Scholar 

  34. S. Schaal, D. Sternad, and C. G. Atkeson, “One-handed juggling: A dynamical approach to a rhythmic movement task,” Journal of Motor Behavior, vol. 28, pp. 165–183, 1996.

    Article  Google Scholar 

  35. S. Schaal, “Is imitation learning the route to humanoid robots?,” Trends in Cognitive Sciences, vol. 3, pp. 233–242, 1999.

    Article  Google Scholar 

  36. S. Schaal and C. G. Atkeson, “Constructive incremental learning from only local information,” Neural Computation, vol. 10, pp. 2047–2084, 1998.

    Article  Google Scholar 

  37. A. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learning motor primitives,” in Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds.: Cambridge, MA: MIT Press, 2003.

    Google Scholar 

  38. E. W. Aboaf, S. M. Drucker, and C. G. Atkeson, “Task-level robot learing: Juggling a tennis ball more accurately,” presented at Proceedings of IEEE Interational Conference on Robotics and Automation, May 14–19, Scottsdale, Arizona, 1989.

    Google Scholar 

  39. S. Schaal and C. G. Atkeson, “Open loop stable control strategies for robot juggling,” presented at IEEE International Conference on Robotics and Automation, Georgia, Atlanta, 1993.

    Google Scholar 

  40. P. Viviani and C. Terzuolo, “Space-time invariance in learned motor skills,” in Tutorials in Motor Behavior, G. E. Stelmach and J. Requin, Eds. Amsterdam: North-Holland, 1980, pp. 525–533.

    Google Scholar 

  41. F. Lacquaniti, C. Terzuolo, and P. Viviani, “The law relating the kinematic and figural aspects of drawing movements,” Acta Psychologica, vol. 54, pp. 115–130, 1983.

    Article  Google Scholar 

  42. P. Viviani and T. Flash, “Minimum-jerk, two-thirds power law, and isochrony: Converging approaches to movement planning,” Journal of Experimental Psychology: Human Perception and Performance, vol. 21, pp. 32–53, 1995.

    Article  Google Scholar 

  43. P. L. Gribble and D. J. Ostry, “Origins of the power law relation between movement velocity and curvature: Modeling the effects of muscle mechanics and limb dynamics,” Journal of Neurophysiology, vol. 76, pp. 2853–2860, 1996.

    Google Scholar 

  44. P. Viviani and M. Cenzato, “Segmentation and coupling in complex movements,” Journal of Experimental Psychology: Human Perception and Performance, vol. 11, pp. 828–845, 1985.

    Article  Google Scholar 

  45. P. Viviani, “Do units of motor action really exist?,” in Experimental Brain Research Series 15. Berlin: Springer, 1986, pp. 828–845.

    Google Scholar 

  46. J. Wann, I. Nimmo-Smith, and A. M. Wing, “Relation between velocity and curvature in movement: Equivalence and divergence between a power law and a minimum jerk model,” Journal of Experimental Psychology: Human Perception and Performance, vol. 14, pp. 622–637, 1988.

    Article  Google Scholar 

  47. J. F. Soechting and C. A. Terzuolo, “Organization of arm movements. Motion is segmented,” Neuroscience, vol. 23, pp. 39–51, 1987.

    Article  Google Scholar 

  48. J. F. Soechting and C. A. Terzuolo, “Organization of arm movements in three dimensional space. Wrist motion is piecewise planar,” Neuroscience, vol. 23, pp. 53–61, 1987.

    Article  Google Scholar 

  49. P. Morasso, “Three dimensional arm trajectories,” Biological Cybernetics, vol. 48, pp. 187–194, 1983.

    Article  Google Scholar 

  50. G. Pellizzer, J. T. Massey, J. T. Lurito, and A. P. Georgopoulos, “Threedimensional drawings in isometric conditions: planar segmentation of force trajectory,” Experimental Brain Research, vol. 92, pp. 326–227, 1992.

    Article  Google Scholar 

  51. D. Sternad and D. Schaal, “Segmentation of endpoint trajectories does not imply segmented control,” Experimental Brain Research, vol. 124, pp. 118–136, 1999.

    Article  Google Scholar 

  52. S. Schaal and D. Sternad, “Origins and violations of the 2/3 power law in rhythmic 3D movements,” Experimental Brain Research, vol. 136, pp. 60–72, 2001.

    Article  Google Scholar 

  53. S. V. Adamovich, M. F. Levin, and A. G. Feldman, “Merging different motor patterns: coordination between rhythmical and discrete single-joint,” Experimental Brain Research, vol. 99, pp. 325–337, 1994.

    Article  Google Scholar 

  54. D. Sternad, E. L. Saltzman, and M. T. Turvey, “Interlimb coordination in a simple serial behavior: A task dynamic approach,” Human Movement Science, vol. 17, pp. 392–433, 1998.

    Article  Google Scholar 

  55. D. Sternad, A. De Rugy, T. Pataky, and W. J. Dean, “Interaction of discrete and rhythmic movements over a wide range of periods,” Exp Brain Res, vol. 147, pp. 162–74, 2002.

    Article  Google Scholar 

  56. N. Picard and P. L. Strick, “Imaging the premotor areas,” Curr Opin Neurobiol, vol. 11, pp. 663–72., 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Schaal, S. (2006). Dynamic Movement Primitives -A Framework for Motor Control in Humans and Humanoid Robotics. In: Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H. (eds) Adaptive Motion of Animals and Machines. Springer, Tokyo. https://doi.org/10.1007/4-431-31381-8_23

Download citation

  • DOI: https://doi.org/10.1007/4-431-31381-8_23

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-24164-5

  • Online ISBN: 978-4-431-31381-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics