Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Wireless Sensor Networks for Military Purposes

  • Chapter
  • First Online:
Autonomous Sensor Networks

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 13))

Abstract

By connecting multiple sensors, data analysis services and applications, military capabilities can be increased significantly. Consequently, wireless sensor networking has become a fundamental aspect of modern military sensor technology and military information systems. The diverse set of military use cases for wireless sensor networks is presented in this chapter in the context of intelligence, surveillance and reconnaissance, of environmental monitoring and of battlefield situational awareness.

On this basis, the characteristics of military wireless sensor networks are outlined towards operation without a pre-deployed infrastructure, for a rapid deployment of the capability, and for operation in a hostile environment. The extent to which the military requirements on wireless sensor networks go beyond commercial/civil requirements is explained. In the areas of security and sensor fusion, many well-known mechanisms deployed for the internet infrastructure are not applicable and alternative solutions are furthermore presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AECTP:

Allied environmental conditions testing publication

CBRN:

Chemical, biological, radiological and nuclear

CIMIC:

Civil and military cooperation

CIS:

Communication and information system

CLV:

Combined likelihood vector

COMINT:

Communication intelligence

CSD:

Coalition shared data base

DRR:

Defence requirements review

DoS:

Denial of service

ELINT:

Electronic intelligence

EO/IR:

Electro-optical/infrared

EW:

Electronic warfare

FFT:

Friendly force tracking

FMV:

Full motion video

GMTI:

Ground moving target indicator

HF:

High-frequency

HQ:

Headquarter

HUMINT:

Human intelligence

IBE:

Identity-based encryption

IDCP:

Identification data combining process

IED:

Improvised explosive devices

JDL:

Joint Directors of Laboratories

JISR:

Joint intelligence, surveillance, reconnaissance

JLV:

Joint likelihood vector

LPI:

Low probability of intercept

MAC:

Medium access control

MiG:

Mikoyan-and-Gurevich Design Bureau

NATO:

North Atlantic Treaty Organisation

NEC:

Network-enabled capability

NIS:

NATO identification system

OODA:

Observe-orient-decide-act

RFID:

Radio frequency identification

SAR:

Synthetic aperture radar

SIGINT:

Signals intelligence

SIOP:

Service interoperability point

SPM:

Source probability matrices

STANAG:

NATO standardization agreement

TPM:

Trusted platform module

UAV:

Unmanned aerial vehicle

WAP:

Wireless application protocol

XML:

Extensible mark-up language

References

  1. Southee D, Henry J, Perry G (2005) Osama seeker: AISB 05 – Proceedings of the Symposium on Robotics, Mechatronics and Animatronics in the Creative and Entertainment Industries and Arts, Hatfield, UK (April 2005)

    Google Scholar 

  2. Winkler M, Bartolomasi P, Nesse L (2009) Multi-hop Networking for Intelligence, Surveillance and Reconnaissance UAS Missions, Military CIS Conference MCC 2009

    Google Scholar 

  3. US Department of Defense (1999) Interoperability and performance standards for medium and high frequency radios, Military Standard 188-141B, March 1999

    Google Scholar 

  4. Domingo MC (2011) Securing underwater wireless communication networks. IEEE Wirel Commun 18(1):22–28

    Article  Google Scholar 

  5. Halperin D et al (2008) Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defense. Proceedings of the 2008 IEEE Symposium on Security and Privacy

    Google Scholar 

  6. Maisel W, Kohno D (2010) Improving the security and privacy of implantable medical devices. N Engl J Med 362(13):1164–1166

    Article  CAS  Google Scholar 

  7. Zheng J, Lee MJ, Anshel M (2006) Toward Secure Low Rate Wireless Personal Area Networks. IEEE Transactions on Mobile Computing 5(10):1361–1373

    Article  Google Scholar 

  8. Hu W, Tan H, Corke P, Shih WC, Jha S (2010) Toward trusted wireless sensor networks. ACM Trans Sens Netw 7(1):5:1–5:25

    Google Scholar 

  9. Wood A, Stankovic J (2002) Denial of service in sensor networks. IEEE Computer 35(10):54–62

    Google Scholar 

  10. Law YW, Palaniswami M, Van Hoesel L, Doumen J, Hartel P, Havinga P (2009) Energy-efficient link-layer jamming attacks against wireless sensor network MAC protocols. ACM Trans Sens Netw 5(1):6:1–6:38

    Google Scholar 

  11. Ning P, Liu A, Du W (2008) Mitigating DoS attacks against broadcast authentication in wireless sensor networks. ACM Trans Sens Netw 4(1):1:1–1:35

    Google Scholar 

  12. Poovendran R, Wang C, Roy S (eds) (2007) Secure localization and time synchronization for wireless sensor and ad hoc networks. Advances in information security, vol 30. Springer, Berlin

    Google Scholar 

  13. Ozdemir S, Xiao Y (2009) Secure data aggregation in wireless sensor networks: a comprehensive overview. Comput Netw 53:2022–2037

    Article  Google Scholar 

  14. Hegland A, Winjum E, Mjolsnes S, Rong C, Kure O, Spilling P (2006) A survey of key management in ad hoc networks. IEEE Commun Surv Tutorials 8(3):48–66

    Article  Google Scholar 

  15. Gaubatz G, Kaps J-P, Sunar B (2005) Public key cryptography in sensor networks—revisited. In: Castelluccia C et al (eds) Security in ad-hoc and sensor networks. Lecture notes in computer science, vol 3313. Springer, Berlin, pp 2–18

    Chapter  Google Scholar 

  16. Wang R, Du W, Liu X, Ning P (2009) ShortPK: a short-term public key scheme for broadcast authentication in sensor networks. ACM Trans Sens Netw 6(1):9:1–9:29

    Google Scholar 

  17. Gura N, Patel A, Wander A, Eberle H, Shantz S (2004) Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In: Joye M, Quisquater J-J (eds) Proceedings of Cryptographic Hardware and Embedded Systems (CHES). Lecture notes in computer science, vol 3156, pp 935–943

    Google Scholar 

  18. Nikoletseas S, Rolim J (2011) Theoretical aspects of distributed computing in sensor networks. Springer, Berlin

    Book  Google Scholar 

  19. Zhang J, Varadharajan V (2010) Wireless sensor network key management survey and taxonomy. J Netw Comput Appl 33:63–75

    Article  CAS  Google Scholar 

  20. Simplicio M, Barreto P, Margi C, Carvalho T (2010) A survey on key management mechanisms for distributed wireless sensor networks. Comput Netw 54:2591–2612

    Article  Google Scholar 

  21. Tan C, Wang H, Zhong S, Li Q (2008) Body sensor network security: an identity-based cryptography approach. WiSec’08, Alexandria, Virginia, USA

    Google Scholar 

  22. Anderson R, Chan H, Perrig A (2004) Key infection: smart trust for smart dust. In: Proceedings of the 12th IEEE International Conference on Network Protocols (ICNP '04). IEEE Computer Society, Washington, DC, USA, pp 206–215

    Google Scholar 

  23. Pietro R, Mancini L, Mei A (2006) Energy efficient node-to-node authentication and communication confidentiality in wireless sensor networks. Wireless Networks 12(6):709–721

    Google Scholar 

  24. Liggins M, Hall D, Llinas J (2001) Handbook of multisensor data fusion. CRC, Boca Raton

    Google Scholar 

  25. Smith D, Singh S (2006) Approaches to multisensor data fusion in target tracking: a survey. IEEE Trans Knowl Data Eng 18(12):1696–1710

    Article  Google Scholar 

  26. Hall D, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85(1):6–23

    Article  Google Scholar 

  27. Nakamura E, Laureiro A, Frery A (2007) Information fusion for wireless sensor networks: methods, models, and classification. ACM Comput Surv 39(3):9

    Google Scholar 

  28. Shahbazian E, Blodgett D, Labbe P (2001) The extended OODA model for data fusion systems. In: Proceedings of 4th International Conference on Information Fusion

    Google Scholar 

  29. Bedworth M, O'Brien J, Jemity M (2000) The Omnibus model: a new model of data fusion? Aerosp Electron Syst Mag 15(4):30–36

    Article  Google Scholar 

  30. Esteban J, Starr A, Willetts R, Hannah P, Bryanston-Cross P (2005) A review of data fusion models and architectures: towards engineering guidelines. Neural Comput Appl 14(4):273–281

    Article  Google Scholar 

  31. Elmenreich W (2007) A review on system architectures for sensor fusion applications. In: Nah Y, Puschner P, Rammig F (eds) Software technologies for embedded and ubiquitous systems. Springer, Berlin, pp 547–559

    Chapter  Google Scholar 

  32. Frankel CB, Bedworth MD (2000) Control, estimation and abstraction in fusion architectures: lessons from human information processing. In: FUSION 2000: Proceedings of the Third International Conference on Information Fusion

    Google Scholar 

  33. Steinberg AN, Bowman CL, White FE (1998) Revisions to the JDL Model. In: Joint NATO/IRIS conference proceedings, Quebec, 1998

    Google Scholar 

  34. Blasch E, Plano S (2002) JDL Level 5 fusion model “user refinement” issues and applications in group tracking. In: Proc. of SPIE – Aerosense, vol 4729, pp 270–279

    Google Scholar 

  35. NATO Standardization Agency: Identification Data Combining Process. STANAG 4162, Brussels (2001)

    Google Scholar 

  36. NATO Standardization Agency: NATO Joint Standard Identification Description. STANAG 1241, Brussels (2009)

    Google Scholar 

  37. Koks D, Challa S (2005) An introduction to Bayesian and Dempster-Shafer data fusion, Edinburgh, Australia

    Google Scholar 

  38. Sentz K, Ferson S (2002) Combination of evidence in Dempster-Shafer theory. Sandia Report SAND2002-0835, Sandia National Laboratories, Albuquerque, New Mexico

    Google Scholar 

  39. Hinman M (2002) Some computational approaches for situation assessment and impact assessment. In: Proceedings of the Fifth International Conference on Information Fusion, vol.1, pp 687–693

    Google Scholar 

  40. Wrona K, Oudkerk S, Hallingstad G (2010) Designing medium assurance XML-labelling guards for NATO. In: Proceedings of the Military Communications Conference (MILCOM), San Jose, USA, 2010

    Google Scholar 

  41. Wrona K, Hallingstad G (2011) Controlled information sharing in NATO operations. In: Proceedings of the Military Communications Conference (MILCOM), Baltimore, USA, 2011

    Google Scholar 

  42. Associated Press; Hackers in the bloodstream: diabetics vulnerable to attack on insulin pumps, sugar monitors, 4 Aug 2011

    Google Scholar 

  43. Chu C-K, Liu J, Zhou J, Bao F, Deng R (2010) Practical ID-based encryption for wireless sensor networks. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2010), pp 337–340

    Google Scholar 

  44. Duh D-R, Lin T-C, Tung C-H, Chan S-J (2006) An implementation of AES algorithm with the multiple spaces random key pre-distribution scheme on MOTE-KIT 5040. In: Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, vol. 2, pp 64–71

    Google Scholar 

  45. Gouvea CPL, Lopez J. Software implementation of pairing-based cryptography on sensor networks using MSP430 microcontroller, INDOCRYPT 2009, LNCS 5922, pp 248–262

    Google Scholar 

  46. Nguyen ST, Rong C. ZigBee security using identity-based cryptography. ATC 2007, LNCS 4610, pp 3–12

    Google Scholar 

  47. Szczechowiak P, Kargl A, Collier M, Scott M (2009) On the application of pairing based cryptography to wireless sensor networks. WiSec’09, Zurich, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winkler, M., Street, M., Tuchs, KD., Wrona, K. (2012). Wireless Sensor Networks for Military Purposes. In: Filippini, D. (eds) Autonomous Sensor Networks. Springer Series on Chemical Sensors and Biosensors, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_40

Download citation

Publish with us

Policies and ethics