Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Enhancing Situational Awareness to Prevent Infectious Disease Outbreaks from Becoming Catastrophic

  • Chapter
  • First Online:
Global Catastrophic Biological Risks

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 424))

Abstract

Catastrophic epidemics, if they occur, will very likely start from localized and far smaller (non-catastrophic) outbreaks that grow into much greater threats. One key bulwark against this outcome is the ability of governments and the health sector more generally to make informed decisions about control measures based on accurate understanding of the current and future extent of the outbreak. Situation reporting is the activity of periodically summarizing the state of the outbreak in a (usually) public way. We delineate key classes of decisions whose quality depends on high-quality situation reporting, key quantities for which estimates are needed to inform these decisions, and the traditional and novel sources of data that can aid in estimating these quantities. We emphasize the important role of situation reports as providing public, shared planning assumptions that allow decision makers to harmonize the response while making explicit the uncertainties that underlie the scenarios outlined for planning. In this era of multiple data sources and complex factors informing the interpretation of these data sources, we describe four principles for situation reporting: (1) Situation reporting should be thematic, concentrating on essential areas of evidence needed for decisions. (2) Situation reports should adduce evidence from multiple sources to address each area of evidence, along with expert assessments of key parameters. (3) Situation reports should acknowledge uncertainty and attempt to estimate its magnitude for each assessment. (4) Situation reports should contain carefully curated visualizations along with text and tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bastos L, Economou T, Gomes M, Villela D, Bailey T, Codeço C (2017) Modelling reporting delays for disease surveillance data [Internet]. arXiv [stat.AP]. Available: http://arxiv.org/abs/1709.09150

  • Chao DL, Halloran ME, Longini IM (2010) School opening dates predict pandemic influenza A (H1N1) outbreaks in the United States. J Infect Dis 202(6):877–880

    PubMed  PubMed Central  Google Scholar 

  • Cori A, Donnelly CA, Dorigatti I, Ferguson NM, Fraser C, Garske T et al (2017) Key data for outbreak evaluation: building on the Ebola experience. Philos Trans R Soc Lond B Biol Sci 372(1721). https://doi.org/10.1098/rstb.2016.0371

    Google Scholar 

  • Dimitrov NB, Goll S, Hupert N, Pourbohloul B, Meyers LA (2011) Optimizing tactics for use of the U.S. antiviral strategic national stockpile for pandemic influenza. PLoS One 6(1):e16094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Executive Office of the President’s Council of Advisors on Science and Technology (2009) Report to the President on US Preparations for 2009-H1N1 Influenza. Aug 2009

    Google Scholar 

  • Finnie TJR, South A, Bento A, Sherrard-Smith E, Jombart T (2016) EpiJSON: a unified data-format for epidemiology. Epidemics 15(Jun):20–26

    PubMed  Google Scholar 

  • Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD et al (2009) Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324(5934):1557–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garske T, Legrand J, Donnelly CA, Ward H, Cauchemez S, Fraser C et al (2009) Assessing the severity of the novel influenza A/H1N1 pandemic. BMJ 339(Jul):b2840

    PubMed  Google Scholar 

  • Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R (2014) Global disease monitoring and forecasting with Wikipedia. PLoS Comput Biol 10(11):e1003892

    PubMed  PubMed Central  Google Scholar 

  • Grad YH, Lipsitch M (2014) Epidemiologic data and pathogen genome sequences: a powerful synergy for public health. Genome Biol 15(11):538

    Google Scholar 

  • Hatchett RJ, Mecher CE, Lipsitch M (2007) Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc Natl Acad Sci USA. 104(18):7582–7587

    CAS  PubMed  Google Scholar 

  • Höhle M, an der Heiden M (2014) Bayesian nowcasting during the STEC O104: H4 outbreak in Germany, 2011. Biometrics 70(4):993–1002

    PubMed  Google Scholar 

  • Huang KE, Lipsitch M, Shaman J, Goldstein E (2014) The US 2009 A(H1N1) influenza epidemic: quantifying the impact of school openings on the reproductive number. Epidemiology 25(2):203–206

    PubMed  PubMed Central  Google Scholar 

  • Iuliano AD, Reed C, Guh A, Desai M, Dee DL, Kutty P et al (2009) Notes from the field: outbreak of 2009 pandemic influenza A (H1N1) virus at a large public university in Delaware. Clin Infect Dis 49(12):1811–1820

    PubMed  Google Scholar 

  • Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J et al (2009) Hospitalized patients with 2009 H1N1 influenza in the United States, April–June 2009. N Engl J Med 361(20):1935–1944

    CAS  PubMed  Google Scholar 

  • Jombart T, Aanensen DM, Baguelin M, Birrell P, Cauchemez S, Camacho A et al (2014) Outbreak tools: a new platform for disease outbreak analysis using the R software. Epidemics 7(Jun):28–34

    PubMed  PubMed Central  Google Scholar 

  • Koppeschaar CE, Colizza V, Guerrisi C, Turbelin C, Duggan J, Edmunds WJ et al (2017) Influenzanet: citizens among 10 countries collaborating to monitor influenza in Europe. JMIR Publ Health Surveill 3(3):e66

    Google Scholar 

  • Kyle JL, Harris E (2008) Global spread and persistence of dengue. Annu Rev Microbiol 62:71–92

    CAS  PubMed  Google Scholar 

  • Leung K, Lipsitch M, Yuen KY, Wu JT (2017) Monitoring the fitness of antiviral-resistant influenza strains during an epidemic: a mathematical modelling study. Lancet Infect Dis 17(3):339–347

    PubMed  Google Scholar 

  • Lipsitch M (2017) If a global catastrophic biological risk materializes, at what stage will we recognize it? Health Secur 15(4):331–334

    PubMed  PubMed Central  Google Scholar 

  • Lipsitch M, Eyal N (2017) Improving vaccine trials in infectious disease emergencies. Science 357(6347):153–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd SC, 2009 H1n1 Surveillance Group (2011) Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1. Biosecur Bioterror 9(2):89–115

    Google Scholar 

  • Lipsitch M, Hayden FG, Cowling BJ, Leung GM (2009a) How to maintain surveillance for novel influenza A H1N1 when there are too many cases to count. Lancet 374(9696):1209–1211

    PubMed  Google Scholar 

  • Lipsitch M, Riley S, Cauchemez S, Ghani AC, Ferguson NM (2009b) Managing and reducing uncertainty in an emerging influenza pandemic [Internet]. New Engl J Med 112–115. https://doi.org/10.1056/nejmp0904380

    PubMed  Google Scholar 

  • Lipsitch M, Donnelly CA, Fraser C, Blake IM, Cori A, Dorigatti I et al (2015) Potential biases in estimating absolute and relative case-fatality risks during outbreaks. PLoS Negl Trop Dis 9(7):e0003846

    PubMed  PubMed Central  Google Scholar 

  • Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3(10):1470–1476

    CAS  PubMed  Google Scholar 

  • Lu FS, Hattab MW, Clemente CL, Biggerstaff M, Santillana M (2019) Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches [Internet]. Nature Commun 10. https://doi.org/10.1038/s41467-018-08082-0

  • Magpantay FMG, Rohani P (2015) Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. R Soc B. Available from: http://rspb.royalsocietypublishing.org/content/282/1806/20150347.short

  • McGough SF, Brownstein JS, Hawkins JB, Santillana M (2017) Forecasting Zika incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data. PLoS Negl Trop Dis 11(1):e0005295

    PubMed  PubMed Central  Google Scholar 

  • McIver DJ, Brownstein JS (2014) Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput Biol 10(4):e1003581

    PubMed  PubMed Central  Google Scholar 

  • Meltzer MI, Damon I, LeDuc JW, Millar JD (2001) Modeling potential responses to smallpox as a bioterrorist weapon. Emerg Infect Dis 7(6):959–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW, Ervin ED et al (2014) Estimating the future number of cases in the Ebola epidemic–Liberia and Sierra Leone, 2014–2015. Available from: https://stacks.cdc.gov/view/cdc/24901

  • Messina JP, Brady OJ, Pigott DM, Golding N, Kraemer MUG, Scott TW et al (2015) The many projected futures of dengue. Nat Rev Microbiol 13(4):230–239

    CAS  PubMed  Google Scholar 

  • of Health USD, Services H et al (2007) Community strategy for pandemic influenza mitigation. US Department of Health and Human Services

    Google Scholar 

  • Osterholm MT, Kelley NS, Sommer A, Belongia EA (2012) Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 12(1):36–44

    PubMed  Google Scholar 

  • Paul MJ, Dredze M, Broniatowski D (2014) Twitter improves influenza forecasting. PLoS Curr 6. https://doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117

  • Peak CM, Wesolowski A, Zu Erbach-Schoenberg E, Tatem AJ, Wetter E, Lu X et al (2018) Population mobility reductions associated with travel restrictions during the Ebola epidemic in Sierra Leone: use of mobile phone data. Int J Epidemiol 47(5):1562–1570

    PubMed  PubMed Central  Google Scholar 

  • Reed C, Angulo F, Swerdlow D, Lipsitch M, Meltzer M et al (2009) Estimating the burden of pandemic influenza A/H1N1–United States, April–July 2009. Emerg Infect Dis

    Google Scholar 

  • Rudolf F, Damkjær M, Lunding S, Dornonville de la Cour K, Young A, Brooks T et al (2017) Influence of referral pathway on ebola virus disease case-fatality rate and effect of survival selection bias. Emerg Infect Dis 23(4):597–600

    PubMed  PubMed Central  Google Scholar 

  • Santillana M, Nsoesie EO, Mekaru SR, Scales D, Brownstein JS (2014) Using clinicians’ search query data to monitor influenza epidemics. Clin Infect Dis 59(10):1446–1450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS (2015) Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol 11(10):e1004513

    PubMed  PubMed Central  Google Scholar 

  • Santillana M, Nguyen AT, Louie T, Zink A, Gray J, Sung I et al (2016) Cloud-based electronic health records for real-time, region-specific influenza surveillance. Sci Rep 6(May):25732

    Google Scholar 

  • Shaman J, Kohn M (2009) Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci USA. 106(9):3243–3248

    CAS  PubMed  Google Scholar 

  • Shaman J, Goldstein E, Lipsitch M (2011) Absolute humidity and pandemic versus epidemic influenza. Am J Epidemiol 173(2):127–135

    PubMed  Google Scholar 

  • Signorini A, Segre AM, Polgreen PM (2011) The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS One 6(5):e19467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM, Wójcik O et al (2015) Flu Near You: crowdsourced symptom reporting spanning 2 influenza seasons. Am J Publ Health 105(10):2124–2130

    Google Scholar 

  • Tiffany A, Dalziel BD, Kagume Njenge H, Johnson G, Nugba Ballah R, James D et al (2017) Estimating the number of secondary Ebola cases resulting from an unsafe burial and risk factors for transmission during the West Africa Ebola epidemic. PLoS Negl Trop Dis 11(6):e0005491

    PubMed  PubMed Central  Google Scholar 

  • van de Kasteele J, Elers P, Wallinga J (2019) Nowcasting the number of new symptomatic cases during infectious disease outbreaks using constrained P‐spline smoothing. Epidemiology (in press)

    Google Scholar 

  • Van Kerkhove MD, Asikainen T, Becker NG, Bjorge S, Desenclos J-C, dos Santos T et al (2010) Studies needed to address public health challenges of the 2009 H1N1 influenza pandemic: insights from modeling. PLoS Med 7(6):e1000275

    PubMed  PubMed Central  Google Scholar 

  • Voelker R (2018) Vulnerability to pandemic flu could be greater today than a century ago. JAMA 320(15):1523–1525

    PubMed  Google Scholar 

  • Wallinga J, Lipsitch M (2007) How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Biol Sci. 274(1609):599–604

    CAS  PubMed  Google Scholar 

  • Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516

    PubMed  Google Scholar 

  • Wesolowski A, Qureshi T, Boni MF, Sundsøy PR, Johansson MA, Rasheed SB et al (2015) Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc Natl Acad Sci 112(38):11887–11892

    CAS  PubMed  Google Scholar 

  • White LF, Pagano M (2008) A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Stat Med 27(16):2999–3016

    PubMed  PubMed Central  Google Scholar 

  • White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M et al (2009) Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza Other Respi Viruses 3(6):267–276

    Google Scholar 

  • Wilson N, Baker MG (2009) The emerging influenza pandemic: estimating the case fatality ratio. Euro Surveill 14(26). Available: https://www.ncbi.nlm.nih.gov/pubmed/19573509

  • Wolkewitz M, Schumacher M (2017) Survival biases lead to flawed conclusions in observational treatment studies of influenza patients. J Clin Epidemiol 84(Apr):121–129

    PubMed  Google Scholar 

  • Yang S, Santillana M, Kou SC (2015) Accurate estimation of influenza epidemics using Google search data via ARGO. Proc Natl Acad Sci USA. 112(47):14473–14478

    CAS  PubMed  Google Scholar 

  • Yang S, Santillana M, Brownstein JS, Gray J, Richardson S, Kou SC (2017) Using electronic health records and Internet search information for accurate influenza forecasting. BMC Infect Dis 17(1):332

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

ML was partially supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number U54GM088558. MS was partially supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM130668. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Lipsitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lipsitch, M., Santillana, M. (2019). Enhancing Situational Awareness to Prevent Infectious Disease Outbreaks from Becoming Catastrophic. In: Inglesby, T., Adalja, A. (eds) Global Catastrophic Biological Risks. Current Topics in Microbiology and Immunology, vol 424. Springer, Cham. https://doi.org/10.1007/82_2019_172

Download citation

Publish with us

Policies and ethics