Abstract
Spermatogenesis is a complex biological process of cellular transformation that produces male haploid germ cells from diploid spermatogonial stem cells. This process has been simplified morphologically by recognizing cellular associations or ‘stages’ and ‘phases’ of spermatogenesis, which progress through precisely timed and highly organized cycles. These cycles of spermatogenesis are essential for continuous sperm production, which is dependent upon numerous factors, both intrinsic (Sertoli and germ cells) and extrinsic (androgens, retinoic acids), as well as being species-specific.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hess R, França LR. History of the sertoli cell discovery. In: Griswold M, Skinner M, eds. Sertoli Cell Biology, New York: Academic Press, 2005.
Russell LD, Griswold MD, eds. The Sertoli Cell. Clearwater: Cache River Press, 1993.
Hess R, França LR. Structure of the Sertoli cell. In: Griswold M, Skinner M, eds. Sertoli Cell Biology. New York: Academic Press, 2005.
Russell LD, Ettlin RA, Sinha Hikim AP et al. Histological and Histopathological Evaluation of the Testis. Clearwater: Cache River Press, 1990.
Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann NY Acad Sci 1952; 55:548–573.
Hess RA. Quantitative and qualitative characteristics of the stages and transitions in the cycle of the rat seminiferous epithelium: Light microscopic observations of perfusion-fixed and plastic-embedded testes. Biol Reprod 1990; 43(3):525–542.
de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000; 21(6):776–798.
Chiarini-Garcia H, Hornick JR, Griswold MD et al. Distribution of type A spermatogonia in the mouse is not random. Biol Reprod 2001; 65(4):1179–1185.
Chiarini-Garcia H, Russell LD. High-resolution light microscopic characterization of mouse spermatogonia. Biol Reprod 2001; 65(4):1170–1178.
Hess RA, Cooke PS, Hofmann MC et al. Mechanistic insights into the regulation of the spermatogonial sterm cell niche. Cell Cycle 2006; 5(11):1164–1170.
Cooke PS, Hess RA, Simon L et al. The transcription factor Ets-related molecule (ERM) is essential for spermatogonial stem cell maintenance and self-renewal. Anim Reprod 2006; 3(2):98–107.
Chen C, Ouyang W, Grigura V et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 2005; 436(7053):1030–1034.
Ryu BY, Orwig KE, Avarbock MR et al. Stem cell and niche development in the postnatal rat testis. Dev Biol 2003; 263(2):253–263.
Brinster RL. Germline stem cell transplantation and transgenesis. Science 2002; 296(5576):2174–2176.
Dobrinski I. Germ cell transplantation and testis tissue xenografting in domestic animals. Anim Reprod Sci 2005; 89(1–4):137–145.
Ogawa T, Ohmura M, Ohbo K. The niche for spermatogonial stem cells in the mammalian testis. Int J Hematol 2005; 82(5):381–388.
Oatley JM, Brinster RL. Spermatogonial stem cells. Methods Enzymol 2006; 419:259–282.
Ryu BY, Orwig KE, Oatley JM et al. Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 2006; 24(6):1505–1511.
Russell L. Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 1977; 148(3):313–328.
Russell LD. Sertoli-germ cell interactions: A review. Gamete Res 1980; 3:179–202.
Hess RA. STAGES: Interactive Software on Spermatogenesis. 2.2 ed. Champaign: Vanguard Productions and Cache River Press, 1998.
Franca LR, Cardoso FM. Duration of spermatogenesis and sperm transit time through the epididymis in the Piau boar. Tissue Cell 1998; 30(5):573–582.
Franca LR, Avelar GF, Almeida FF. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs. Theriogenology 2005; 63(2):300–318.
Leblond CP, Clermont Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the “periodic acid-fuchsin sulfurous acid” technique. Am J Anat 1952; 90:167–215.
Hess RA, Miller LA, Kirby JD et al. Immunoelectron microscopic localization of testicular and somatic cytochromes c in the seminiferous epithelium of the rat [published erratum appears in Biol Reprod 1993; 49(2):439]. Biol Reprod 1993; 48(6):1299–1308.
Franca LR, Ye SJ, Ying L et al. Morphometry of rat germ cells during spermatogenesis. Anat Rec 1995; 241(2):181–204.
Perey B, Clermont Y, Leblond C. The wave of the seminiferous epithelium in the rat. Am J Anat 1961; 108:47–77.
Yoshida S, Takakura A, Ohbo K et al. Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol 2004; 269(2):447–458.
Braydich-Stolle L, Nolan C, Dym M et al. Role of glial cell line-derived neurotrophic factor in germ-line stem cell fate. Ann NY Acad Sci 2005; 1061:94–99.
Hofmann MC, Braydich-Stolle L, Dettin L et al. Immortalization of mouse germ line stem cells. Stem Cells 2005; 23(2):200–210.
Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 2005; 279(1):114–124.
Kanatsu-Shinohara M, Miki H, Inoue K et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 2005; 72(4):985–991.
Kanatsu-Shinohara M, Toyokuni S, Shinohara T. Genetic selection of mouse male germline stem cells in vitro: Offspring from single stem cells. Biol Reprod 2005; 72(1):236–240.
Ballow D, Meistrich ML, Matzuk M et al. Sohlh1 is essential for spermatogonial differentiation. Dev Biol 2006; 294(1):161–167.
Braydich-Stolle L, Kostereva N, Dym M et al. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol 2007; 304(1):34–45.
de Rooij DG. Rapid expansion of the spermatogonial stem cell tool box. Proc Natl Acad Sci USA 2006; 103(21):7939–7940.
Kanatsu-Shinohara M, Inoue K, Miki H et al. Clonal origin of germ cell colonies after spermatogonial transplantation in mice. Biol Reprod 2006; 75(1):68–74.
Kanatsu-Shinohara M, Inoue K, Igonuki N et al. Leukemia inhibitory factor enhances formation of germ cell colonies in neonatal mouse testis culture. Biol Reprod 2007; 76(1):55–62.
Kierszenbaum AL. Cell-cycle regulation and mammalian gametogenesis: A lesson from the unexpected. Mol Reprod Dev 2006; 73(8):939–942.
Naughton CK, Jain S, Strickland AM et al. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 2006; 74(2):314–321.
Oatley JM, Avarbock MR, Telaranta AI et al. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA 2006; 103(25):9524–9529.
Payne C, Braun RE. Glial cell line-derived neurotrophic factor maintains a POZ-itive influence on stem cells. Proc Natl Acad Sci USA 2006; 103(26):9751–9752.
Yoshida S, Sukeno M, Nakagawa T et al. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 2006; 133(8):1495–1505.
Ebisuno S, Kohjimoto Y, Tamura M et al. Histological observations of the adhesion and endocytosis of calcium oxalate crystals in MDCK cells and in rat and human kidney. Urol Int 1997; 58(4):227–231.
Ehmcke J, Joshi B, Hergenrother SD et al. Aging does not affect spermatogenic recovery after experimentally induced injury in mice. Reproduction 2007; 133(1):75–83.
Nakagawa T, Nabeshima Y, Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 2007; 12(2):195–206.
Aponte PM, van Bragt MP, de Rooij DG et al. Spermatogonial stem cells: Characteristics and experimental possibilities. Apmis 2005; 113(11–12):727–742.
Brinster RL. Male germline stem cells: From mice to men. Science 2007; 316(5823):404–405.
Clermont Y. Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 1972; 52(1):198–236.
Franca LR, Russell LD. The testis of domestic mammals. In: Martinez-Garcia F, Regadera J, eds. Male Reproduction: A Multidisciplinary Overview. Madrid: Churchill Communications Europe España, 1998:197–219.
Hess RA, Schaeffer DJ, Eroschenko VP et al. Frequency of the stages in the cycle of the seminiferous epithelium in the rat. Biol Reprod 1990; 43(3):517–524.
Franca LR, Ogawa T, Avarbock MR et al. Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol Reprod 1998; 59(6):1371–1377.
Zeng W, Avelar GF, Rathi R et al. The length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts. J Androl 2006; 27(4):527–533.
Hess RA, Chen P. Computer tracking of germ cells in the cycle of the seminiferous epithelium and prediction of changes in cycle duration in animals commonly used in reproductive biology and toxicology. J Androl 1992; 13(3):185–190.
Creasy DM. Evaluation of testicular toxicity in safety evaluation studies: The appropriate use of spermatogenic staging. Toxicol Pathol 1997; 25(2):119–131.
Creasy DM. Evaluation of testicular toxicology: A synopsis and discussion of the recommendations proposed by the Society of Toxicologic Pathology. Birth Defects Res Part B Dev Reprod Toxicol 2003; 68(5):408–415.
Liu Y, Nusrat A, Schnell FJ et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000; 113(Pt 13):2363–2374.
Vilela DAR, Silva SGB, Peixoto MTD et al. Spermatogenesis in teleost; Insights from the Nile tilapia (Oreochromis niloticus) model. Fish Physiol Biochem 2003; 28:187–190.
Russell LD, Chiarini-Garcia H, Korsmeyer SJ et al. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod 2002; 66(4):950–958.
Franca LR, Russell LD, Cummins JM. Is human spermatogenesis uniquely poor? ARBS 2002; 4:19–42.
Johnson L, Chaturvedi PK, Williams JD. Missing generations of spermatocytes and spermatids in seminiferous epithelium contribute to low efficiency of spermatogenesis in humans. Biol Reprod 1992; 47(6):1091–1098.
Sharpe R. Regulation of spermatogenesis. In: Knobil E, Neill J, eds. The Physiology of Reproduction. 2nd ed. New York: Raven Press, 1994:1363–1434.
De Gendt K, Atanassova N, Tan KA et al. Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective or total ablation of the androgen receptor. Endocrinology 2005; 146(9):4117–4126.
Sharpe RM, McKinnell C, Kivlin C et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 2003; 125(6):769–784.
van Haaster LH, De Jong FH, Docter R et al. The effect of hypothyroidism on Sertoli cell proliferation and differentiation and hormone levels during testicular development in the rat. Endocrinology 1992; 131(3):1574–1576.
van Haaster LH, de Jong FH, Docter R et al. High neonatal triiodothyronine levels reduce the period of Sertoli cell proliferation and accelerate tubular lumen formation in the rat testis, and increase serum inhibin levels. Endocrinology 1993; 133(2):755–760.
Holsberger DR, Cooke PS. Understanding the role of thyroid hormone in Sertoli cell development: A mechanistic hypothesis. Cell Tissue Res 2005; 322(1):133–140.
Holsberger DR, Kiesewetter SE, Cooke PS. Regulation of neonatal Sertoli cell development by thyroid hormone receptor alpha1. Biol Reprod 2005; 73(3):396–403.
Cooke PS, Arambepola NK, Kirby JD et al. Thyroid hormone regulation of the development of the testis and its constituent cell types. Polish J Endocrinol 1997; 48(Suppl. 3):43–58.
Cooke PS, Hess RA, Kirby JD et al. Neonatal propylthiouracil (PTU) treatment as a model system for studying factors controlling testis growth and sperm production. In: Bartke A, ed. Function of Somatic Cells in the Testis. New York: Springer-Verlag, 1994:400–407.
Hess RA, Cooke PS, Bunick D et al. Adult testicular enlargement induced by neonatal hypothyroidism is accompanied by increased Sertoli and germ cell numbers. Endocrinol 1993; 132(6):2607–2613.
Cooke PS, Porcelli J, Hess RA. Induction of increased testis growth and sperm production in adult rats by neonatal administration of the goitrogen propylthiouracil (PTU): The critical period. Biol Reprod 1992; 46(1):146–154.
Cooke PS, Hess RA, Porcelli J et al. Increased sperm production in adult rats after transient neonatal hypothyroidism. Endocrinol 1991; 129(1):244–248.
Holsberger DR, Buchold GM, Leal MC et al. Cell-cycle inhibitors p27Kip1 and p21Cip1 regulate murine Sertoli cell proliferation. Biol Reprod 2005; 72(6):1429–1436.
Franca LR, Hess RA, Cooke PS et al. Neonatal hypothyroidism causes delayed Sertoli cell maturation in rats treated with propylthiouracil: Evidence that the Sertoli cell controls testis growth. Anat Rec 1995; 242(1):57–69.
Sharpe RM, Turner KJ, McKinnell C et al. Inhibin B levels in plasma of the male rat from birth to adulthood: Effect of experimental manipulation of Sertoli cell number. J Androl 1999; 20(1):94–101.
Petersen C, Soder O. The sertoli cell—A hormonal target and’ super’ nurse for germ cells that determines testicular size. Horm Res 2006; 66(4):153–161.
Tan KA, De Gendt K, Atanassova N et al. The role of androgens in sertoli cell proliferation and functional maturation: Studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 2005; 146(6):2674–2683.
Schulz RW, Menting S, Bogerd J et al. Sertoli cell proliferation in the adult testis—Evidence from two fish species belonging to different orders. Biol Reprod 2005; 73(5):891–898.
McCoard SA, Wise TH, Lunstra DD et al. Stereological evaluation of Sertoli cell ontogeny during fetal and neonatal life in two diverse breeds of swine. J Endocrinol 2003; 178(3):395–403.
Neves ES, Chiarini-Garcia H, Franca LR. Comparative testis morphometry and seminiferous epithelium cycle length in donkeys and mules. Biol Reprod 2002; 67(1):247–255.
Franca LR, Silva Jr VA, Chiarini-Garcia H et al. Cell proliferation and hormonal changes during postnatal development of the testis in the pig. Biol Reprod 2000; 63(6):1629–1636.
Leal MC, Franca LR. The seminiferous epithelium cycle length in the black tufted-ear marmoset (Callithrix penicillata) is similar to humans. Biol Reprod 2006; 74(4):616–624.
Almeida FF, Leal MC, Franca LR. Testis morphometry, duration of spermatogenesis, and spermatogenic efficiency in the wild boar (Sus scrofa scrofa). Biol Reprod 2006; 75(5):792–799.
Kluin PM, Kramer MF, de Rooij DG. Spermatogenesis in the immature mouse proceeds faster than in the adult. Int J Androl 1982; 5(3):282–294.
Sharpe RM. Sertoli cell endocrinology and signal transduction: Androgen regulation. In: Griswold M, Skinner M, eds. Sertoli Cell Biology. New York: Academic Press, 2005:199–216.
Ventela S, Ohta H, Parvinen M et al. Development of the stages of the cycle in mouse seminiferous epithelium after transplantation of green fluorescent protein-labeled spermagonial stem cells. Biol Reprod 2002; 66(5):1422–1429.
Ismail N, Morales C, Clermont Y. Role of spermatogonia in the stage-synchronization of the seminiferous epithelium in vitamin-A-deficient rats. Am J Anat 1990; 188(1):57–63.
Morales CR, Griswold MD. Variations in the level of transferrin and SGP-2 mRNAs in Sertoli cells of vitamin A-deficient rats. Cell Tissue Res 1991; 263(1):125–130.
Ismail N, Morales CR. Effects of vitamin A deficiency on the inter-Sertoli cell tight junctions and on the germ cell population. Microsc Res Tech 1992; 20(1):43–49.
van Pelt AM, van Dissel-Emiliani FM, Gaemers IC et al. Characteristics of A spermatogonia and preleptotene spermatocytes in the vitamin A-deficient rat testis. Biol Reprod 1995; 53(3):570–578.
Bartlett JM, Weinbauer GF, Nieschlag E. Stability of spermatogenic synchronization achieved by depletion and restoration of vitamin A in rats. Biol Reprod 1990; 42(4):603–612.
Chung SS, Sung W, Wang X et al. Retinoic acid receptor alpha is required for synchronization of spermatogenic cycles and its absence results in progressive breakdown of the spermatogenic process. Dev Dyn 2004; 230(4):754–766.
Weber JE, Russell LD, Wong V et al. Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli-Sertoli and Sertoli-germ-cell relationships. Am J Anat 1983; 167(2):163–179.
Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 1994; 91(24):11303–11307.
Russell LD, Franca LR, Brinster RL. Ultrastructural observations of spermatogenesis in mice resulting from transplantation of mouse spermatogonia. J Androl 1996; 17(6):603–614.
Russell LD, Brinster RL. Ultrastructural observations of spermatogenesis following transplantation of rat testis cells into mouse seminiferous tubules. J Androl 1996; 17(6):615–627.
Ye SJ, Ying L, Ghosh S et al. Sertoli cell cycle: A re-examination of the structural changes during the cycle of the seminiferous epithelium of the rat. Anat Rec 1993; 237(2):187–198.
Franca LR, Ghosh S, Ye SJ et al. Surface and surface-to-volume relationships of the Sertoli cell during the cycle of the seminiferous epithelium in the rat. Biol Reprod 1993; 49(6):1215–1228.
McKinney TD, Desjardins C. Postnatal development of the testis, fighting behavior, and fertility in house mice. Biol Reprod 1973; 9(3):279–294.
Clermont Y, Perey B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am J Anat 1957; 100(2):241–267.
Oakberg EF. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 1956; 99(3):507–516.
van Haaster LH, de Rooij DG. Spermatogenesis is accelerated in the immature Djungarian and Chinese hamster and rat. Biol Reprod 1993; 49(6):1229–1235.
Tan KA, Turner KJ, Saunders PT et al. Androgen regulation of stage-dependent cyclin D2 expression in Sertoli cells suggests a role in modulating androgen action on spermatogenesis. Biol Reprod 2005; 72(5):1151–1160.
Zhang YQ, He XZ, Zhang JS et al. Stage-specific localization of transforming growth factor beta1 and beta3 and their receptors during spermatogenesis in men. Asian J Androl 2004; 6(2):105–109.
Xu J, Beyer AR, Walker WH et al. Developmental and stage-specific expression of Smad2 and Smad3 in rat testis. J Androl 2003; 24(2):192–200.
O’Donnell L, McLachlan RI, Wreford NG et al. Testosterone withdrawal promotes stage-specific detachment of round spermatids from the rat seminiferous epithelium. Biol Reprod 1996; 55(4):895–901.
Sharpe RM, Maddocks S, Millar M et al. Testosterone and spermatogenesis: Identification of stage-specific, androgen-regulated proteins secreted by adult rat seminiferous tubules. J Androl 1992; 13(2):172–184.
Vihko KK, Toppari J, Parvinen M. Stage-specific regulation of plasminogen activator secretion in the rat seminiferous epithelium. Endocrinology 1987; 120(1):142–145.
Liu D, Matzuk MM, Sung WK et al. Cyclin A1 is required for meiosis in the male mouse. Nat Genet 1998; 20(4):377–380.
Shang E, Salazar G, Crowley TE et al. Identification of unique, differentiation stage-specific patterns of expression of the bromodomain-containing genes Brd2, Brd3, Brd4, and Brdt in the mouse testis. Genes Expr Patterns 2004; 4(5):513–519.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Landes Bioscience and Springer Science+Business Media
About this chapter
Cite this chapter
Hess, R.A., de Franca, L.R. (2009). Spermatogenesis and Cycle of the Seminiferous Epithelium. In: Cheng, C.Y. (eds) Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology, vol 636. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09597-4_1
Download citation
DOI: https://doi.org/10.1007/978-0-387-09597-4_1
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-79990-2
Online ISBN: 978-0-387-09597-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)