Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dilation of Geometric Networks

2005; Ebbers-Baumann, Grüne, Karpinski, Klein, Kutz, Knauer, Lingas

  • Reference work entry
Encyclopedia of Algorithms
  • 271 Accesses

Keywords and Synonyms

Detour; Spanning ratio; Stretch factor              

Problem Definition

Notations

Let \( { G=(V,E) } \) be a plane geometric network, whose vertex set V is a finite set of point sites in \( { {\mathbb R}^2 } \), connected by an edge set E of non-crossing straight line segments with endpoints in V. For two points \( { p \not= q \in V } \) let \( { \xi_G(p,q) } \) denote a shortest path from p to q in G. Then

$$ \sigma(p,q) := \frac{|\xi_G(p,q)|}{|pq|} $$
(1)

is the detour one encounters when using network G, in order to get from p to q, instead of walking straight. Here, \( { |.| } \) denotes the Euclidean length.

The dilation of G is defined by

$$ \sigma(G) := \max_{p \not= q \in V}\sigma(p,q)\:. $$
(2)

This value is also known as the spanning ratio or the stretch factor of G. It should, however, not be confused with the geometric dilation of a network, where the points on the edges are also being considered, in addition to the vertices.

Given a finite set Sof points in the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Vigneron, A.: Sparse Geometric Graphs with Small Dilation. 16th International Symposium ISAAC 2005, Sanya. In: Deng, X., Du, D. (eds.) Algorithms and Computation, Proceedings. LNCS, vol. 3827, pp. 50–59. Springer, Berlin (2005)

    Google Scholar 

  2. Das, G., Joseph, D.: Which Triangulations Approximate the Complete Graph? In: Proc. Int. Symp. Optimal Algorithms. LNCS 401, pp. 168–192. Springer, Berlin (1989)

    Chapter  Google Scholar 

  3. Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay Graphs Are Almost as Good as Complete Graphs. Discret. Comput. Geom. 5, 399–407 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ebbers‐Baumann, A., Gruene, A., Karpinski, M., Klein, R., Knauer, C., Lingas, A.: Embedding Point Sets into Plane Graphs of Small Dilation. Int. J. Comput. Geom. Appl. 17(3), 201–230 (2007)

    Article  MATH  Google Scholar 

  5. Eppstein, D.: The Geometry Junkyard. http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/

  6. Eppstein, D.: Spanning Trees and Spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier, Amsterdam (1999)

    Google Scholar 

  7. Eppstein, D., Wortman, K.A.: Minimum Dilation Stars. In: Proc. 21st ACM Symp. Comp. Geom. (SoCG), Pisa, 2005, pp. 321–326

    Google Scholar 

  8. Hillar, C.J., Rhea, D.L. A Result about the Density of Iterated Line Intersections. Comput. Geom.: Theory Appl. 33(3), 106–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ismailescu, D., Radoičić, R.: A Dense Planar Point Set from Iterated Line Intersections. Comput. Geom. Theory Appl. 27(3), 257–267 (2004)

    Article  MATH  Google Scholar 

  10. Keil, J.M., Gutwin, C.A.: The Delaunay Triangulation Closely Approximates the Complete Euclidean Graph. Discret. Comput. Geom. 7, 13–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klein, R., Kutz, M.: The Density of Iterated Plane Intersection Graphs and a Gap Result for Triangulations of Finite Point Sets. In: Proc. 22nd ACM Symp. Comp. Geom. (SoCG), Sedona (AZ), 2006, pp. 264–272

    Google Scholar 

  12. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press (2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Klein, R. (2008). Dilation of Geometric Networks. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_111

Download citation

Publish with us

Policies and ethics