Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. In: Proc. 37th IEEE Symp. on Foundations of Computer Science, 1996, pp. 2–12
Google Scholar
Arora, S.: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. In: Proc. 38th IEEE Symp. on Foundations of Computer Science, 1997, pp. 554–563
Google Scholar
Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. J. ACM 45, 753–782 (1998)
Article
MathSciNet
MATH
Google Scholar
Du, D.Z., Hwang, F.K., Shing, M.T., Witbold, T.: Optimal routing trees. IEEE Trans. Circuits 35, 1335–1337 (1988)
Article
Google Scholar
Du, D.-Z., Pan, L.-Q., Shing, M.-T.: Minimum edge length guillotine rectangular partition. Technical Report 0241886, Math. Sci. Res. Inst., Univ. California, Berkeley (1986)
Google Scholar
Du, D.-Z., Hsu, D.F., Xu, K.-J.: Bounds on guillotine ratio. Congressus Numerantium 58, 313–318 (1987)
MathSciNet
Google Scholar
Gonzalez, T., Zheng, S.Q.: Bounds for partitioning rectilinear polygons. In: Proc. 1st Symp. on Computational Geometry (1985)
Google Scholar
Gonzalez, T., Zheng, S.Q.: Improved bounds for rectangular and guillotine partitions. J. Symb. Comput. 7, 591–610 (1989)
Article
MathSciNet
MATH
Google Scholar
Lingas, A., Pinter, R.Y., Rivest, R.L., Shamir, A.: Minimum edge length partitioning of rectilinear polygons. In: Proc. 20th Allerton Conf. on Comm. Control and Compt., Illinos (1982)
Google Scholar
Lingas, A.: Heuristics for minimum edge length rectangular partitions of rectilinear figures. In: Proc. 6th GI‐Conference, Dortmund, January 1983. Springer
Google Scholar
Min, M., Huang, S.C.-H., Liu, J., Shragowitz, E., Wu, W., Zhao, Y., Zhao, Y.: An Approximation Scheme for the Rectilinear Steiner Minimum Tree in Presence of Obstructions. Fields Inst. Commun. 37, 155–164 (2003)
MathSciNet
Google Scholar
Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple new method for the geometric k-MST problem. In: Proc. 7th ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 402–408.
Google Scholar
Mitchell, J.S.B., Blum, A., Chalasani, P., Vempala, S.: A constant‐factor approximation algorithm for the geometric k-MST problem in the plane. SIAM J. Comput. 28(3), 771–781 (1999)
Article
MathSciNet
MATH
Google Scholar
Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: Part II – A simple polynomial‐time approximation scheme for geometric k-MST, TSP, and related problem. SIAM J. Comput. 29(2), 515–544 (1999)
Article
MathSciNet
Google Scholar
Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: Part III – Faster polynomial‐time approximation scheme for geometric network optimization, manuscript, State University of New York, Stony Brook (1997)
Google Scholar