Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Partitions

1986; Du, Pan, Shing

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

Technique for constructing approximation      

Problem Definition

Adaptive partition is one of major techniques to design polynomial‐time approximation algorithms, especially polynomial‐time approximation schemes for geometric optimization problems. The framework of this technique is to put the input data into a rectangle and partition this rectangle into smaller rectangles by a sequence of cuts so that the problem is also partitioned into smaller ones. Associated with each adaptive partition, a feasible solution can be constructed recursively from solutions in smallest rectangles to bigger rectangles. With dynamic programming, an optimal adaptive partition is computed in polynomial time.

Historical Background

The adaptive partition was first introduced to the design of an approximation algorithm by Du et al. [5] with a guillotine cut while they studied the minimum edge length rectangular partition (MELRP) problem. They found that if the partition is performed by...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. In: Proc. 37th IEEE Symp. on Foundations of Computer Science, 1996, pp. 2–12

    Google Scholar 

  2. Arora, S.: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. In: Proc. 38th IEEE Symp. on Foundations of Computer Science, 1997, pp. 554–563

    Google Scholar 

  3. Arora, S.: Polynomial-time approximation schemes for Euclidean TSP and other geometric problems. J. ACM 45, 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Du, D.Z., Hwang, F.K., Shing, M.T., Witbold, T.: Optimal routing trees. IEEE Trans. Circuits 35, 1335–1337 (1988)

    Article  Google Scholar 

  5. Du, D.-Z., Pan, L.-Q., Shing, M.-T.: Minimum edge length guillotine rectangular partition. Technical Report 0241886, Math. Sci. Res. Inst., Univ. California, Berkeley (1986)

    Google Scholar 

  6. Du, D.-Z., Hsu, D.F., Xu, K.-J.: Bounds on guillotine ratio. Congressus Numerantium 58, 313–318 (1987)

    MathSciNet  Google Scholar 

  7. Gonzalez, T., Zheng, S.Q.: Bounds for partitioning rectilinear polygons. In: Proc. 1st Symp. on Computational Geometry (1985)

    Google Scholar 

  8. Gonzalez, T., Zheng, S.Q.: Improved bounds for rectangular and guillotine partitions. J. Symb. Comput. 7, 591–610 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lingas, A., Pinter, R.Y., Rivest, R.L., Shamir, A.: Minimum edge length partitioning of rectilinear polygons. In: Proc. 20th Allerton Conf. on Comm. Control and Compt., Illinos (1982)

    Google Scholar 

  10. Lingas, A.: Heuristics for minimum edge length rectangular partitions of rectilinear figures. In: Proc. 6th GI‐Conference, Dortmund, January 1983. Springer

    Google Scholar 

  11. Min, M., Huang, S.C.-H., Liu, J., Shragowitz, E., Wu, W., Zhao, Y., Zhao, Y.: An Approximation Scheme for the Rectilinear Steiner Minimum Tree in Presence of Obstructions. Fields Inst. Commun. 37, 155–164 (2003)

    MathSciNet  Google Scholar 

  12. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple new method for the geometric k-MST problem. In: Proc. 7th ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 402–408.

    Google Scholar 

  13. Mitchell, J.S.B., Blum, A., Chalasani, P., Vempala, S.: A constant‐factor approximation algorithm for the geometric k-MST problem in the plane. SIAM J. Comput. 28(3), 771–781 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: Part II – A simple polynomial‐time approximation scheme for geometric k-MST, TSP, and related problem. SIAM J. Comput. 29(2), 515–544 (1999)

    Article  MathSciNet  Google Scholar 

  15. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: Part III – Faster polynomial‐time approximation scheme for geometric network optimization, manuscript, State University of New York, Stony Brook (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Deng, P., Wu, W., Shragowitz, E. (2008). Adaptive Partitions. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_2

Download citation

Publish with us

Policies and ethics