Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-approximability of Bimatrix Nash Equilibria

2006; Chen, Deng, Teng

  • Reference work entry
Encyclopedia of Algorithms
  • 174 Accesses

Keywords and Synonyms

Approximate Nash equilibrium            

Problem Definition

In this entry, the following two problems are considered: 1) the problem of finding an approximate Nash equilibrium in a positively normalized bimatrix (or two-player) game; and 2) the smoothed complexity of finding an exact Nash equilibrium in a bimatrix game. It turns out that these two problems are strongly correlated [3].

Let \( { \cal G=({\mathbf{A}},{\mathbf{B}}) } \) be a bimatrix game, where \( { {\mathbf{A}}=(a_{i,j}) } \) and \( { {\mathbf{B}}=(b_{i,j}) } \) are both \( { n\times n } \) matrices. Game \( { \cal G } \) is said to be positively normalized, if \( { 0\le a_{i,j},b_{i,j}\le 1 } \) for all \( { 1\le i,j\le n } \).

Let \( { \mathbb{P}^n } \) denote the set of all probability vectors in \( { \mathbb{R}^n } \), i. e., non-negative vectors whose entries sum to 1. A Nash equilibrium [8] of \( { \cal G=({\mathbf{A}},{\mathbf{B}}) } \) is a pair of mixed strategies \( { ({\mathbf{x}}^*\in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Chen, X., Deng, X.: 3-Nash is PPAD-complete. ECCC, TR05-134 (2005)

    Google Scholar 

  2. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: FOCS'06: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science, 2006, pp. 261–272

    Google Scholar 

  3. Chen, X., Deng, X., Teng, S.H.: Computing Nash equilibria: approximation and smoothed complexity. In: FOCS'06: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science, 2006, pp. 603–612

    Google Scholar 

  4. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: STOC'06: Proceedings of the 38th ACM Symposium on Theory of Computing, 2006, pp. 71–78

    Google Scholar 

  5. Daskalakis, C., Papadimitriou, C.H.: Three-player games are hard. ECCC, TR05-139 (2005)

    Google Scholar 

  6. Goldberg, P.W., Papadimitriou, C.H.: Reducibility among equilibrium problems. In: STOC'06: Proc. of the 38th ACM Symposium on Theory of Computing, 2006, pp. 61–70

    Google Scholar 

  7. Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proc. of the 4th ACM conference on Electronic commerce, 2003, pp. 36–41

    Google Scholar 

  8. Nash, J.F.: Equilibrium point in n-person games. Proc. Natl. Acad. Sci. USA 36(1), 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  9. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48, 498–532 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Savani, R., von Stengel, B.: Exponentially many steps for finding a Nash equilibrium in a bimatrix game. In: FOCS'04: Proc. of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 258–267

    Google Scholar 

  11. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms and heuristics: progress and open questions. In: Pardo, L.M., Pinkus, A., Süli, E., Todd, M.J. (eds.) Foundations of Computational Mathematics, pp. 274–342. Cambridge University Press, Cambridge, UK (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Chen, X., Deng, X. (2008). Non-approximability of Bimatrix Nash Equilibria. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_258

Download citation

Publish with us

Policies and ethics