Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum Algorithm for the Collision Problem

1998; Brassard, Hoyer, Tapp

  • Reference work entry
Encyclopedia of Algorithms
  • 280 Accesses

Problem Definition

A function F is said to be r-to-one if every element in its image has exactly r distinct preimages.

Input: an r-to-one function F.

Output: x 1 and x 2 such that \( { F(x_1) = F(x_2) } \).

Key Results

The algorithm presented here finds collisions in arbitrary r-to-one functions F after only \( { O(\sqrt[3]{N/r}) } \) expected evaluations of F. The algorithm uses the function as a black box, that is, the only thing the algorithm requires is the capacity to evaluate the function. Again assuming the function is given by a black box, the algorithm is optimal [1] and it is more efficient than the best possible classical algorithm, which has query complexity \( { \Omega(\sqrt{N/r}) } \). The result is stated precisely in the following theorem and corollary.

Theorem 1

Given an r-to-one function \( { F \colon X \rightarrow Y } \) with \( { r \geq 2 } \) and an integer \( { 1 \leq k \leq N=|X| } \), algorithm \( \textnormal{\textbf{Col\-li\-sion}}(F,k) \)returns a collision...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Aaronson, S., Shi, Y.: Quantum Lower Bounds for the Collision and the Element Distinctness Problems. J. ACM 51(4), 595–605 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyer, M., Brassard, G., Høyer, P., Tapp A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  3. Brassard, G., Høyer, P., Mosca, M., Tapp A.: Quantum Amplitude Amplification and Estimation. In: Lomonaco, S.J. (ed.) Quantum Computation & Quantum Information Science, AMS Contemporary Mathematics Series Millennium Volume, vol. 305, pp. 53–74. American Mathematical Society, Providence (2002)

    Google Scholar 

  4. Brassard, G., Høyer, P., Tapp, A.: Quantum Algorithm for the Collision Problem. 3rd Latin American Theoretical Informatics Symposium (LATIN'98). LNCS, vol. 1380, pp. 163–169. Springer (1998)

    Google Scholar 

  5. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grover, L.K.: A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

    Google Scholar 

  7. Stinson, D.R.: Cryptography: Theory and Practice, CRC Press, Inc (1995)

    Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Tapp, A. (2008). Quantum Algorithm for the Collision Problem. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_304

Download citation

Publish with us

Policies and ethics