Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Steiner Forest

1995; Agrawal, Klein, Ravi

  • Reference work entry
Encyclopedia of Algorithms
  • 389 Accesses

Keywords and Synonyms

Requirement join; R-join, Requirement Join    

Problem Definition

The Steiner forest problem is a fundamental problem in network design. Informally, the goal is to establish connections between pairs of vertices in a given network at minimum cost. The problem generalizes the well-known Steiner tree problem. As an example, assume that a telecommunication company receives communication requests from their customers. Each customer asks for a connection between two vertices in a given network. The company's goal is to build a minimum cost network infrastructure such that all communication requests are satisfied.

Formal Definition and Notation

More formally, an instance \( { I = (G, c, R) } \) of the Steiner forest problem is given by an undirected graph \( { G = (V, E) } \) with vertex set V and edge set E, a non-negative cost function \( { c\colon E \rightarrow \mathbb{Q}^+ } \), and a set of vertex pairs \( R = \{(s_1, t_1), \ldots, (s_k, t_k) \} \subseteq V \times V \)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for the generalized Steiner problem on networks. In: Proc. of the 23rd Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, pp. 134–144 (1991)

    Google Scholar 

  2. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algorithm for the generalized Steiner problem in networks. SIAM J. Comput. 24(3), 445–456 (1995)

    Article  MathSciNet  Google Scholar 

  3. Aneja, Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10(2), 167–178 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awerbuch, B., Azar, Y., Bartal, Y.: On-line generalized Steiner problem. In: Proc. of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, 2005, pp. 68–74 (1996)

    Google Scholar 

  6. Becchetti, L., Könemann, J., Leonardi, S., Pál, M.: Sharing the cost more efficiently: improved approximation for multicommodity rent-or-buy. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, pp. 375–384 (2005)

    Google Scholar 

  7. Berman, P., Coulston, C.: On-line algorithms for Steiner tree problems. In: Proc. of the 29th Annual ACM Symposium on Theory of Computing, pp. 344–353. Association for Computing Machinery, New York (1997)

    Google Scholar 

  8. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32(4), 171–176 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fleischer, L., Könemann, J., Leonardi, S., Schäfer, G.: Simple cost sharing schemes for multicommodity rent-or-buy and stochastic Steiner tree. In: Proc. of the 38th Annual ACM Symposium on Theory of Computing, pp. 663–670. Association for Computing Machinery, New York (2006)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost-sharing: a simple approximation algorithm for the multicommodity rent-or-buy problem. In: Proc. of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 606–617., IEEE Computer Society, Washington (2003)

    Google Scholar 

  13. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost-sharing: simpler and better approximation algorithms for network design. J. ACM 54(3), Article 11 (2007)

    Google Scholar 

  14. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algorithms for stochastic optimization. In: Proc. of the 36th Annual ACM Symposium on Theory of Computing, pp. 417–426. Association for Computing Machinery, New York (2004)

    Google Scholar 

  15. Jain, K.: A factor 2 approximation for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jain, K., Vazirani, V.V.: Applications of approximation algorithms to cooperative games. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, pp. 364–372 (2001)

    Google Scholar 

  17. Kent, K., Skorin-Kapov, D.: Population monotonic cost allocation on mst's. In: Proc. of the 6th International Conference on Operational Research, Croatian Operational Research Society, Zagreb, pp. 43–48 (1996)

    Google Scholar 

  18. Könemann, J., Leonardi, S., Schäfer, G.: A group-strategyproof mechanism for Steiner forests. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 612–619. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Google Scholar 

  19. Megiddo, N.: Cost allocation for Steiner trees. Networks 8(1), 1–6 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: budget balance versus efficiency. Econ. Theor. 18(3), 511–533 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thimm, M.: On the approximability of the Steiner tree problem. Theor. Comput. Sci. 295(1–3), 387–402 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vazirani, V.V.: Approximation algorithms. Springer, Berlin (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Schäfer, G. (2008). Steiner Forest. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_402

Download citation

Publish with us

Policies and ethics