Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algorithmic Cooling

1999; Schulman, Vazirani 2002; Boykin, Mor, Roychowdhury, Vatan, Vrijen

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

Algorithmic cooling of spins;  Heat-bath algorithmic cooling          

Problem Definition

The fusion of concepts taken from the fields of quantum computation, data compression, and thermodynamics, has recently yielded novel algorithms that resolve problems in nuclear magnetic resonance and potentially in other areas as well; algorithms that “cool down” physical systems.

  • A leading candidate technology for the construction of quantum computers is Nuclear Magnetic Resonance (NMR). This technology has the advantage of being well-established for other purposes, such as chemistry and medicine. Hence, it does not require new and exotic equipment, in contrast to ion traps and optical lattices, to name a few. However, when using standard NMR techniques (not only for quantum computing purposes) one has to live with the fact that the state can only be initialized in a very noisy manner: The particles' spins point in mostly random directions, with only a tiny bias towards the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Quantum Computing entries in this encyclopedia, e.g. Quantum Dense Coding

  2. 2.

    This constant, γ, is thus responsible for the difference in equilibrium polarization bias [e. g., a hydrogen nucleus is 4 times more polarized than a carbon isotope \( {^{13} } \)C nucleus, but about 103 less polarized than an electron spin].

  3. 3.

    Furthermore, individual addressing of each spin during the algorithm requires a slightly different bias for each.

  4. 4.

    When the entire process is RPC, namely, any of the processes that follow SV ideas, one can refer to it as reversible AC or closed-system AC, rather than as RPC.

Recommended Reading

  1. Baugh, J., Moussa, O., Ryan, C.A., Nayak, A., Laflamme, R.: Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Nature 438, 470–473 (2005)

    Article  Google Scholar 

  2. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. 99, 3388–3393 (2002)

    Article  MATH  Google Scholar 

  3. Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A., Mor, T., Weinstein, Y., Xiao, L.: Experimental heat-bath cooling of spins. Submitted to Proc. Natl. Acad. Sci. USA. See also quant-ph/0511156 (2005)

    Google Scholar 

  4. Chang, D.E., Vandersypen, L.M.K., Steffen, M.: NMR implementation of a building block for scalable quantum computation. Chem. Phys. Lett. 338, 337–344 (2001)

    Article  Google Scholar 

  5. Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. 94, 1634–1639 (1997)

    Article  Google Scholar 

  6. Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y.: Optimal algorithmic cooling of spins. Isr. J. Chem. 46, 371–391 (2006), also in: Ekl, S. et al. (eds.) Lecture Notes in Computer Science, Volume 4618, pp. 2–26. Springer, Berlin (2007), Unconventional Computation. Proceedings of the Sixth International Conference UC2007 Kingston, August 2007

    Article  Google Scholar 

  7. Fernandez, J.M.: De computatione quantica. Dissertation, University of Montreal (2004)

    Google Scholar 

  8. Fernandez, J.M., Lloyd, S., Mor, T., Roychowdhury V.: Practicable algorithmic cooling of spins. Int. J. Quant. Inf. 2, 461–477 (2004)

    Article  Google Scholar 

  9. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mor, T., Roychowdhury, V., Lloyd, S., Fernandez, J.M., Weinstein, Y.: Algorithmic cooling. US Patent 6,873,154 (2005)

    Google Scholar 

  11. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett. 94, 120501, pp. 1–4 (2005)

    Google Scholar 

  12. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic cooling. SIAM J. Comput. 36, 1729–1747 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schulman, L.J., Vazirani, U.: Molecular scale heat engines and scalable quantum computation. Proc. 31st ACM STOC, Symp. Theory of Computing,pp. 322–329 Atlanta, 01–04 May 1999

    Google Scholar 

  14. Sørensen, O.W.: Polarization transfer experiments in high-resolution NMR spectroscopy. Prog. Nuc. Mag. Res. Spect. 21, 503–569 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Mor, T. (2008). Algorithmic Cooling. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_8

Download citation

Publish with us

Policies and ethics