Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algebraic Curve

  • Reference work entry
  • First Online:
Computer Vision

Synonyms

Implicit polynomial curve

Related Concepts

Algebraic Surface

Definition

An algebraic curve is a curve determined by a 2-D implicit polynomial (IP) of degree n:

$$\displaystyle\begin{array}{rcl} f_{n}(\mathbf{x})& =& \displaystyle\sum _{0\leq i,j;i+j\leq n}a_{ij}{x}^{i}{y}^{j} \\ & =& (\mathop{\underbrace{1\ x\ \ldots \ {y}^{n}}}\limits _{{\mathbf{m}}^{\mathrm{T}}}){(\mathop{\underbrace{a_{00}\ a_{10}\ \ldots \ a_{0n}}}\limits _{\mathbf{a}})}^{\mathrm{T}} = 0,\end{array}$$
(1)

where x = (x, y)T is the coordinate of a point on a curve. That is, the curve is always represented by f n ’s zero level set: {x | f n (x) = 0}. The polynomial function is usually denoted by an inner product between two vectors: monomial vector m and coefficient vector a. For the entries in these vectors, indices {i, j} can be arranged in different orders, such as lexicographical order or inverse lexicographical order. In addition, the homogeneous binary polynomial of degree r in x and y, \(\sum...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 647.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blane M, Lei ZB, Cooper DB (2000) The 3L algorithm for fitting implicit polynomial curves and surfaces to Data. IEEE Trans Pattern Anal Mach Intell 22(3):298–313

    Article  Google Scholar 

  2. Keren D (1994) Using symbolic computation to find algebraic invariants. IEEE Trans Pattern Anal Mach Intell 16(11):1143–1149

    Article  Google Scholar 

  3. Keren D, Cooper D, Subrahmonia J (1994) Describing complicated objects by implicit polynomials. IEEE Trans Pattern Anal Mach Intell 16(1):38–53

    Article  Google Scholar 

  4. Oden C, Ercil A, Buke B (2003) Combining implicit polynomials and geometric features for hand recognition. Pattern Recognit Lett 24(13):2145–2152

    Article  Google Scholar 

  5. Subrahmonia J, Cooper DB, Keren D (1996) Practical reliable bayesian recognition of 2D and 3D objects using implicit polynomials and algebraic invariants. IEEE Trans Pattern Anal Mach Intell 18(5):505–519

    Article  Google Scholar 

  6. Tarel J, Cooper DB (2000) The complex representation of algebraic curves and its simple exploitation for pose estimation and invariant recognition. IEEE Trans Pattern Anal Mach Intell 22(7):663–674

    Article  Google Scholar 

  7. Tasdizen T, Tarel J-P, Cooper DB (2000) Improving the stability of algebraic curves for applications. IEEE Trans Imag Proc 9(3):405–416

    Article  MathSciNet  MATH  Google Scholar 

  8. Taubin G (1991) Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans Pattern Anal Mach Intell 13(11):1115–1138

    Article  Google Scholar 

  9. Taubin G, Cooper DB (1992) Symbolic and numerical computation for artificial intelligence, chapter 6, Computational mathematics and applications. Academic, London

    Google Scholar 

  10. Unel M, Wolovich WA (2000) On the construction of complete sets of geometric invariants for algebraic curves. Adv Appl Math 24:65–87

    Article  MathSciNet  MATH  Google Scholar 

  11. Wolovich WA, Unel M (1998) The determination of implicit polynomial canonical curves. IEEE Trans Pattern Anal Mach Intell 20(10):1080–1090

    Article  Google Scholar 

  12. Zheng B, Ishikawa R, Oishi T, Takamatsu J, Ikeuchi K (2009) A fast registration method using IP and its application to ultrasound image registration. IPSJ Trans Comput Vis Appl 1:209–219

    Google Scholar 

  13. Zheng B, Takamatsu J, Ikeuchi K (2010) An adaptive and stable method for fitting implicit polynomial curves and surfaces. IEEE Trans Pattern Anal Mach Intell 32(3): 561–568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Zheng, B. (2014). Algebraic Curve. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_403

Download citation

Publish with us

Policies and ethics