Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Denoising

  • Reference work entry
  • First Online:
Computer Vision

Synonyms

Noise removal

Related Concepts

Image Enhancement and Restoration

Definition

Denoising is the process of recovering a reference signal that has been corrupted by noise. In computer vision, the reference signal is typically assumed to be the undistorted image of an object or scene, and noise is introduced as a result of the imaging process. The amount and type of noise changes from application to application. An example of a typical noisy image and the result of performing image denoising on it are shown in Fig. 1.

Denoising, Fig. 1
figure 44 figure 44

Left original, noisy MRI scan. Right result after denoising

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 647.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buades A, Coll B, Morel J (2008) Nonlocal image and movie denoising. Int J Comput Vision 76:123–139

    Article  Google Scholar 

  2. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20:89–97

    Article  MathSciNet  Google Scholar 

  3. Dabov K, Foi R, Katkovnik V, Egiazarian K (2006) Image denoising with block matching and 3D filtering. SPIE Electronic Imaging 6064A–30

    Google Scholar 

  4. Estrada F, Fleet D, Jepson A (2009) Stochastic Image Denoising. British Machine Vision Conference (no printed proceedings)

    Google Scholar 

  5. Juhola M, Katajainen J, Raita T (1991) Comparison of Algorithms for Standard Median Filtering. IEEE T Signal Proces (TSP) 39:204–208

    Article  Google Scholar 

  6. Liu C, Szeliski R, Kang SB, Zitnick L, Freeman WT (2008) Automatic estimation and removal of noise from a single image. IEEE Trans Pattern Anal Mach Intell (PAMI) 30(2):299–314

    Article  Google Scholar 

  7. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell (PAMI) 12(7):629–639

    Article  Google Scholar 

  8. Portilla J, Strela V, Wainwright M, Simoncelli E (2003) Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE T Image Process (TIP) 12(11): 1338–1351

    Article  MathSciNet  MATH  Google Scholar 

  9. Roth S, Black M (2009) Fields of Experts. Int J Comput Vision (IJCV) 82(2):205–229

    Article  Google Scholar 

  10. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. Int Conf Comput Vision 839–846

    Google Scholar 

  11. Torralba A, Oliva A (2003) Statistics of Natural Image Categories. Network-Comp Neural 391–412

    Google Scholar 

  12. Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: From error visibility to structural similarity. IEEE T Image Process (TIP) 13(4):600–612

    Article  Google Scholar 

  13. Weickert J (1998) Anisotropic Diffusion in Image Processing. Teubner-Verlag

    Google Scholar 

  14. Image Denoising Benchmark (2010) http://www.cs.utoronto.ca/~strider/Denoise/Benchmark

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Estrada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Estrada, F.J. (2014). Denoising. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_484

Download citation

Publish with us

Policies and ethics