Alvarez L, Guichard F, Lions PL, Morel JM (1992) Axiomes et equations fondamentales du traitement d'images. C R Acad Sci Paris 315:135–138
MathSciNetÂ
MATHÂ
Google ScholarÂ
Alvarez L, Lions PL, Morel JM (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 29:845–866
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Arous GB, Tannenbaum A, Zeitouni O (2003) Stochastic approximations of curve shortening flows. J Differ Equ 195:119–142
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Angenent S, Tannenbaum A, Yezzi A, Zeitouni O (2006) Curve shortening and interacting particle systems. In: Krim H, Yezzi A (eds) Statistics and analysis of shapes. Birkhäuser Boston, Boston, MA, USA, pp 303–313
ChapterÂ
Google ScholarÂ
Angenent S (1991) On the formation of singularities in the curve shortening flow. J Differ Geom 33: 601–633
MathSciNetÂ
MATHÂ
Google ScholarÂ
Arnold VI (1989) Mathematical methods in classical mechanics. Springer, New York
BookÂ
Google ScholarÂ
Blake A, Yuille A (1992) Active vision. MIT, Cambridge
Google ScholarÂ
Blake A Isard M (1998) Active contours. Springer-Verlag New York, Secaucus, NJ, USA
BookÂ
Google ScholarÂ
Busemann H (1958) Convex surfaces, Interscience, New York, NY, USA
MATHÂ
Google ScholarÂ
Blum H (1973) Biological shape and visual science. J Theor Biol 38:205–287
ArticleÂ
Google ScholarÂ
Caselles V, Kimmel R, Sapiro G, (1997) Geodesic snakes. Int J Comput Vis 22:6179
ArticleÂ
Google ScholarÂ
Crandall MG, Ishii H, Lions PL (1992) Users guide to viscosity solutions of second order partial differential equations. Bull Am Math Soc 27:1–67
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Gage M, Hamilton RS, (1986) The heat equation shrinking convex plane curves. J Differ Geom 23:69–96
MathSciNetÂ
MATHÂ
Google ScholarÂ
Grayson M (1987) The heat equation shrinks embedded plane curves to round points. J Diffe Geom 26: 285–314
MathSciNetÂ
MATHÂ
Google ScholarÂ
Grayson M, (1989) Shortening embedded curves. Ann Math 129:71–111
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A, (1996) Conformal curvature flows: from phase transitions to active vision. Arch Ration Mech Anal 134:275–301
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Kimia BB, Tannenbaum A, Zucker SW (1992) On the evolution of curves via a function of curvature, I: the classical case. J Math Anal Appl 163:438–458
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Kipnis C, Landim C (1999) Scaling limits of interacting particle systems. Springer, New York
BookÂ
MATHÂ
Google ScholarÂ
LeVeque RJ, (1992) Numerical Methods for Conservation Laws. Birkhäuser, Boston
BookÂ
MATHÂ
Google ScholarÂ
Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer-Verlag New York, Secaucus, NJ, USA
Google ScholarÂ
Osher SJ, Sethian JA, (1988) Fronts propagation with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79:12–49
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
B. ter Haar Romeny (ed) (1994) Geometry driven diffusion in computer vision. Kluwer, Holland
BookÂ
MATHÂ
Google ScholarÂ
Sapiro G (2001) Geometric partial differential equations and image analysis. Cambridge University Press, Cambridge, UK
BookÂ
MATHÂ
Google ScholarÂ
Sethian JA (1985) Curvature and the evolution of fronts. Commun Math Phys 101:487–499
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
Sethian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge, UK
MATHÂ
Google ScholarÂ
. Sethian JA (1982) An analysis of flame propagation. Ph. D. dissertation, University of California
Google ScholarÂ
Smoller J (1983) Shock waves and reaction-diffusion equations. Springer, New York
BookÂ
MATHÂ
Google ScholarÂ
Sod GA (1985) Numerical methods in fluid dynamics. Cambridge University Press, Cambridge
BookÂ
MATHÂ
Google ScholarÂ
Terzopoulos D, Szelski R (1992) Tracking with kalman snakes. In: Blake A, Zisserman A (eds) Active vision. MIT, Cambridge
Google ScholarÂ
Ushijima TK, Yazaki S (2000) Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature V = Kα. SIAM J Numer Anal 37:500–522
ArticleÂ
MathSciNetÂ
MATHÂ
Google ScholarÂ
LeVeque RJ (1992) Numerical methods for conservation laws. Birkhäuser, Boston
BookÂ
MATHÂ
Google ScholarÂ