Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
  • 1664 Accesses

Fuzzy set theory and fuzzy logic provide tools for handling uncertainties in data mining tasks. To design a fuzzy rule-based classification system (fuzzy classifier) with good generalization ability in a high dimensional feature space has been an active research topic for a long time. As a powerful machine learning approach for data mining and pattern recognition problems, support vector machine (SVM) is known to have good generalization ability. More importantly, an SVM can work very well on a high (or even infinite) dimensional feature space. This chapter presents a survey of the connection between fuzzy classifiers and kernel machines. A significant portion of the chapter is built upon material from articles we have written, in particular (Chen and Wang, 2003a, Chen and Wang, 2003b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bartlett PL 1997 For valid generalization, the size of the weights is more important than the size of the network, Advances in Neural Information Processing Systems 9, 134-140

    Google Scholar 

  • Burges CJC, Schölkopf B 1997 Improving the accuracy and speed of support vector machines, Advances in Neural Information Processing Systems 9, 375-381

    Google Scholar 

  • Chen Y, Wang JZ 2003a Support vector learning for fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems, 11(6):716-728

    Article  Google Scholar 

  • Chen Y, Wang JZ (2003b) Kernel machines and additive fuzzy systems: classification and function approximation, Proc. IEEE International Conference on Fuzzy Systems, 789-795

    Google Scholar 

  • Chiang CK, Chung HY, Lin JJ 1997 A self-learning fuzzy logic controller using genetic algorithms with reinforcements, IEEE Transactions on Fuzzy Systems, 5 (3):460-467

    Article  Google Scholar 

  • Cristianini N., Shawe-Taylor J. (2000) An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press

    Google Scholar 

  • Dickerson JA, Kosko B 1996 Fuzzy function approximation with ellipsoidal rules, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26 (4):542-560

    Article  Google Scholar 

  • Dubois D and Prade H 1978 Operations on fuzzy numbers, International Journal of Systems Science, 9(6):613-626

    Article  MATH  MathSciNet  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2000) Pattern classification, Second Edition. John Wiley and Sons, Inc.

    Google Scholar 

  • Emami MR, Türksen IB, Goldenberg AA 1998 Development of a systematic methodology of fuzzy logic modeling, IEEE Transactions on Neural Networks, 6 (3):346-361

    MATH  Google Scholar 

  • Geman S, Bienenstock E, Doursat R 1992 Neural networks and the Bias/Variance dilemma, Neural Computation, 4(1):1-58

    Article  Google Scholar 

  • Genton MG 2001 Classes of kernels for machine learning: a statistics perspective, Journal of Machine Learning Research, 2:299-312

    Article  Google Scholar 

  • Horn RA, Johnson CR (1985) Matrix Analysis. Cambridge University Press

    Google Scholar 

  • Jang JSR, Sun CT 1993 Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Transactions on Neural Networks, 4 (1):156-159

    Article  Google Scholar 

  • Jang JSR, Sun CT 1995 Neuro-fuzzy modeling and control, Proceedings of the IEEE, 83(3):378-406

    Article  Google Scholar 

  • Joachims T 1999 Making large-scale SVM learning practical, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA: MIT Press, 169-184

    Google Scholar 

  • Kasabov NK 1996 Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems, Fuzzy Sets and Systems, 82(2):135-149

    Article  MathSciNet  Google Scholar 

  • Klawon F, Klement PE 1997 Mathematical analysis of fuzzy classifiers, Lecture Notes in Computer Science 1280:359-370

    Article  Google Scholar 

  • Klir G, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall

    Google Scholar 

  • Kosko B 1994 Fuzzy systems as universal approximators, IEEE Transactions on Computers, 43(11):1329-1333

    Article  MATH  Google Scholar 

  • Kuncheva LI 2000 How good are fuzzy if-then classifiers, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 30(4):501-509

    Article  Google Scholar 

  • Leski JM 2005 TSK-Fuzzy modeling based on ε-insensitive learning, IEEE Transactions on Fuzzy Systems, 13(2):181-193

    Article  Google Scholar 

  • Lin CF, Wang SD 2002 Fuzzy support vector machines, IEEE Transactions on Neural Networks, 13(2):464-471

    Google Scholar 

  • Mangasarian OL 2000 Generalized support vector machines, Advances in Large Margin Classifiers, 135-146

    Google Scholar 

  • Mitaim S, Kosko B 2001 The shape of fuzzy sets in adaptive function approximation, IEEE Transactions on Fuzzy Systems, 9(4):637-656

    Article  Google Scholar 

  • Moser B 2006 On representing and generating kernels by fuzzy equivalence relations, Journal of Machine Learning Research, 7:2603-2620

    Google Scholar 

  • Rovatti R 1998 Fuzzy piecewise multilinear and piecewise linear systems as universal approximators in Sobolev norms, IEEE Transactions on Fuzzy Systems, 6(2):235-249

    Article  Google Scholar 

  • Schölkopf B, Smola AJ, Müller KR, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10:1299-1319

    Google Scholar 

  • Schölkopf B, Sung KK, Burges C, Girosi F, Niyogi P., Poggio T., Vapnik V 1997 Comparing support vector machines with Gaussian kernels to radial basis function classifiers, IEEE Transactions on Signal Processing, 45(11):2758-2765

    Article  Google Scholar 

  • Setnes M 2000 Supervised fuzzy clustering for rule extraction, IEEE Transactions on Fuzzy Systems, 8(4):416-424

    Article  Google Scholar 

  • Setnes M, Babuska R 2001 Rule base reduction: some comments on the use of orthogonal transforms, IEEE Transactions on Systems, Man, and CyberneticsPart C: Applications and Reviews, 31(2):199-206

    Article  Google Scholar 

  • Silipo R, Berthold MR, 2000 Input features’ impact on fuzzy decision process, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 30 (6):821-834

    Google Scholar 

  • Smola AJ, Schölkopf B, Müller KR 1998 The connection between regularization operators and support vector kernels, Neural Networks, 11(4):637-649

    Article  Google Scholar 

  • Sugeno M, Kang GT 1998 Structure identification of fuzzy model, Fuzzy Sets and Systems, 28:15-33

    Article  MathSciNet  Google Scholar 

  • Tang K, Man K, Liu Z, Kwong S 1998 Minimal fuzzy memberships and rules using hierarchical genetic algorithms, IEEE Transactions on Industrial Electronics, 45 (1):162-169

    Article  Google Scholar 

  • Thawonmas R, Abe S 1999 Function approximation based on fuzzy rules extracted from partitioned numerical data, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(4):525-534

    Article  Google Scholar 

  • Vapnik V 1982 Estimation of dependences based on empirical data. Springer Verlag, New York

    MATH  Google Scholar 

  • Vapnik V 1995 The Nature of Statistical Learning Theory. Springer-Verlag, New York

    MATH  Google Scholar 

  • Vapnik V 1998 Statistical learning theory. John Wiley and Sons, Inc., New York

    MATH  Google Scholar 

  • Vapnik V, Golowich SE, Smola A 1997 Support vector method for function approximation, regression estimation, and signal processing, Advances in Neural Information Processing Systems 9, 281-287

    Google Scholar 

  • Wang LX 1999 Analysis and design of hierarchical fuzzy systems, IEEE Transactions on Fuzzy Systems, 7(5):617-624

    Article  Google Scholar 

  • Wang L, Mendel JM 1992 Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE Transactions on Neural Networks, 3 (5):807-814

    Article  Google Scholar 

  • Wong CC, Chen CC 2000 A GA-based method for constructing fuzzy systems directly from numerical data, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 30(6):904-911

    Google Scholar 

  • Wu S, Er MJ, Gao Y 2001 A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks, IEEE Transactions on Fuzzy Systems, 9(4):578-594

    Google Scholar 

  • Yen J, Wang L 1998 Application of statistical information criteria for optimal fuzzy model construction, IEEE Transactions on Fuzzy Systems, 6(3):362-372

    Article  Google Scholar 

  • Ying H 1998 General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators, IEEE Transactions on Fuzzy Systems, 6 (4):582-587

    Article  Google Scholar 

  • Zadeh LA 1996 Fuzzy logic = computing with words, IEEE Transactions on Fuzzy Systems, 4(2):103-111

    Article  MathSciNet  Google Scholar 

  • Zimmermann HJ (1991) Fuzzy set theory and its applications. Kluwer Academic Publishers

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, Y. (2008). Support Vector Machines and Fuzzy Systems. In: Maimon, O., Rokach, L. (eds) Soft Computing for Knowledge Discovery and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69935-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69935-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-69934-9

  • Online ISBN: 978-0-387-69935-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics