Abstract
We introduce and discuss preliminary experience with an application that has vast potential to exploit the Grid for social benefit and offers interesting resource assessment and allocation challenges, having real-time aspects: image registration. Image registration is generally formulated as an optimization problem that satisfies constraints, such as coordinate displacements that are affine or volumepreserving or that obey the laws of elasticity. Three-dimensional registration of high-resolution images is computationally complex and justifies parallel implementation. In turn, ensembles of registration tasks exploit concurrency in the simpler sense of job farming.
Please use the following format when citing this chapter: Gropp, W., Haber, E., Heldmann, S., Keyes, D., Miller, N., Schopf, J., Yang, T., 2007, in IFIP International Federation for Information Processing, Volume 239, Grid-Based Problem Solving Environments, eds. Gaffney, P. W., Poll, J. C. T., (Boston: Springer), pp. 435–448.
Chapter PDF
Similar content being viewed by others
Keywords
References
Anderson, W. K, Gropp, W. D., Kaushik, D. K., Keyes, D. E. and Smith, B. F. (1999). Achieving High Sustained Performance in an Unstructured Mesh GFD Application, in “Proceedings of SC’99,” IEEE Computer Society, Los Alamitos.
Bojanov, B., Hakopian, H. and Sahakian, B. (1993). Spline Functions and Multivariate Interpolation, Springer, New York.
Briggs, W. L., Henson, V. E. and McCormick, S. F. (2000). A Multigrid Tutorial, SIAM, Philadelphia.
Browne, J. C, Yalamanchi, M., Kane, K. and Sankaralingam, K. (2004). General Parallel Computations on Desktop Grid and P2P Systems, in “Proceedings of LCR 2004: Seventh Workshop on Languages, Compilers & Runtime Support for Scalable Systems,” University of Houston, Houston.
Cai, X.-C, Gropp, W. D., Keyes, D. E. and Tidriri, M. D. (1993). Newton-Krylov-Schwarz Methods in GFD, in “Numerical Methods for the Navier-Stokes Equations” (F.-K. Hebeker et al., eds.), Vieweg, Braunschweig.
Cai, X.-C. and Sarkis, M. (1999). A Restricted Additive Schwarz F’reconditioner for General Sparse Linear Systems, SIAM J. Sci. Comput. 21: 792–797.
Cai, X. C. and Keyes, D. E. (2002). Nonlinearly Preconditioned Inexact Newton Algorithms, SIAM J. Sci. Comp. 24: 183–200.
Chazan, D. and Miranker, W. (1969). Chaotic Relaxation, Linear Alg. Applies. 2: 199–222.
Chung, J., Haber, E. and Nagy, J. (2006). Numerical Methods for Coupled Super-Resolution Inverse Problems 22: 1261–1272.
Elad, M. and Feuer, A. (1997). Numerical Methods for Coupled Super-Resolution Inverse Problems 22: 1261–1272.
Garbey, M. and Tromeur-Dervout, D. (2000). A Parallel Adaptive Coupling Algorithm for Systems of Differential Equations, J. Comput. Phys. 161: 401–427.
Globus (2006). http://www.globus.org/toolkit/.
Greenbaum, A. (1997). Iterative Methods for Solving Linear Systems, SIAM, Philadelphia.
Haber, E. and Modersitzki, J. (2006). A Multilevel Method for Image Registration, SIAM J. Sci. Comput. 27: 1594–1607.
Haber, E. and Modersitzki, J. (2006). Intensity gradient based registration and fusion of multi-modal images, Medical Image Computing and Computer-Assisted Intervention–MICCAI (2), pp. 726–733.
hypre (2006). http://www.llnl.gov/CASC/linear solvers/.
ISI, Information Sciences Institute, University of Southern California (2006). Breaking the Medical Image Communication Barrier, http://www.isi.edu/news/news.php7story=152.
ITER (2006). http://www.iter.org/.
Kelley, C. T. (1995). Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia.
Keyes, D. E. (1998). How Scalable is Domain Decomposition in Practice?, in “Proceedings of the 11th Intl. Conf. on Domain Decomposition Methods” (C. H. Lai, et al, eds.), pp. 286–297, DDM.ORG, New York.
Lee, B., McCormick, S. F., Philip, B. and Quinlan, D. J. (2003). Asynchronous Fast Adaptive Composite-Grid Methods: Numerical Results, SIAM J. Sci. Comput. 25: 682–700.
Modersitzki, J. (2004). Numerical Methods for Image Registration, Oxford University Press, Oxford.
OpenPBS (2003). http://www.openpbs.org/.
PETSc (2006). http://www.www-unix.mcs.anl.gov/petsc/.
Saad, Y. (1996). Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston.
Springer Verlag (2006). Journals and New Books in Imaging, 56 pp.
Toselli, A. and Widlund O. (2005). Domain Decomposition Methods — Algorithms and Theory, Springer, New York.
Trilinos (2006). http://www.software.sandia.gov/trilinos/.
Viola, P. (1995). Alignment by Maximization of Mutual Information, Ph.D. thesis, Massachusetts Institute of Technology.
WS-GRAM (2006). http://www.globus.Org/toolkit/docs/3.2/gram/key/.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 International Federation for Information Processing
About this paper
Cite this paper
Gropp, W. et al. (2007). Grid-based Image Registration. In: Gaffney, P.W., Pool, J.C.T. (eds) Grid-Based Problem Solving Environments. IFIP The International Federation for Information Processing, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73659-4_26
Download citation
DOI: https://doi.org/10.1007/978-0-387-73659-4_26
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-73658-7
Online ISBN: 978-0-387-73659-4
eBook Packages: Computer ScienceComputer Science (R0)