Article Outline
Keywords
See also
References
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: Theory, algorithms and applications. Prentice-Hall, Englewood Cliffs
Borůvka O (1926) O jistém problému minimálnim. Práca Moravské Prirodovědecké Spolnečnosti 3:37–58
Cheriton D, Tarjan RE (1976) Finding minimum spanning trees. SIAM J Comput 5:724–742
Cieslik D (1998) Steiner minimal trees. Kluwer, Dordrecht
Cieslik D (1998) Using Hadwiger numbers in network design. In: DIMACS, 40. Am Math Soc, Providence, pp 59–78
Courant R, Robbins H (1941) What is mathematics? Oxford Univ. Press, Oxford
Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1:269–271
Dreyfus SE, Wagner RA (1972) The Steiner problem in graphs. Networks 1:195–207
Du D-Z, Hwang FK (1992) A proof of the Gilbert–Pollak conjecture on the Steiner ratio. Algorithmica 7:121–136
Fermat P (1934) Abhandlungen über Maxima und Minima. Oswalds Klassiker der exakten Wissenschaft, vol 238. H. Miller, reprint from original.
Ford LR Jr, Fulkerson DR (1956) Maximal flow through a network. Canad J Math 8:399–404
Ford LR Jr, Fulkerson DR (1962) Network flow theory. Princeton Univ. Press, Princeton
Foulds LR (1994) Graph theory applications. Springer, Berlin
Garey MR, Johnson DS (1977) The rectilinear Steiner tree problem is NP-complete. SIAM J Appl Math 32:826–834
Garey MR, Johnson DS (1979) Computers and intractibility. Freeman, New York
Gauss CF (1917) Briefwechsel Gauss–Schuhmacher. In: Werke, vol. X. pp 459–468
Gavish B (1982) Topological design of centralized computer networks - Formulations and algorithms. Networks 12:355–377
Gilbert EN, Pollak HO (1968) Steiner minimal trees. SIAM J Appl Math 16:1–29
Graham RL, Hell P (1985) On the history of the minimum spanning tree problem. Ann Hist Comput 7:43–57
Grötschel M, Monma CL (1990) Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM J Discret Math 3:502–523
Grötschel M, Monma CL, Stoer M (1994) Design of survivable networks. In: Handbook Oper Res and Management Sci. North-Holland, Amsterdam
Hakimi SB (1971) Steiner's problem in graphs and its implications. Networks 1:113–133
Hakimi SL, Yau SS (1964) Distance matrix of a graph and its realizability. Quart Appl Math 22:305–317
Horst R, Pardalos PM, Thoai NV (1995) Introduction to global optimization. Kluwer, Dordrecht
Hwang FK (1976) On Steiner minimal trees with rectilinear distance. SIAM J Appl Math 30:104–114
Hwang FK, Richards DS, Winter P (1992) The Steiner tree problem. North-Holland, Amsterdam
Ivanov AO, Tuzhilin AA (1994) Minimal networks - The Steiner problem and its generalizations. CRC Press, Boca Raton
Jungnickel D (1994) Graphen, Netzwerke und Algorithmen. BI Wissenschaftsverlag, Mannheim
Karp RM (1962) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of Computer Computations. Springer, New York, pp 85–103
Kruskal JB (1956) On the shortest spanning subtree of a graph and the travelling salesman problem. Proc 7:48–50
Lawler EL (1976) Combinatorial optimization - Networks and matroids. Holt, Rinehart and Winston, New York
Lengauer T (1990) Combinatorial algorithms for integrated circuit layout. Teubner and Wiley, Stuttgart
Love RF, Morris JG (1972) Modelling inter-city road distances by mathematical function. J Oper Res Soc 23:61–71
Love RF, Morris JG, Wesolowsky G (1989) Facilities location - Models and methods. North-Holland, Amsterdam
Melzak ZA (1961) On the problem of Steiner. Canad Math Bull 4:143–148
Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization. Prentice-Hall, Englewood Cliffs
Robins G, Salowe JS (1995) Low-degree minimum spanning trees. Discrete Comput Geom 14:151–165
Rubinstein JH, Weng JF (1997) Compression theorems and Steiner ratios on spheres. J Combin Optim 1:67–78
Setubal J, Meidanis J (1997) Introduction to computational molecular biology. PWS, Boston, MA
Smith JM (1985) Generalized Steiner network problems in engineering design. In: Design Optimization. pp 119–161
Wald JA, Colbourn CJ (1983) Steiner trees, partial 2-trees, and minimum IFI networks. Networks 13:159–167
Winter P (1985) An algorithm for the Steiner problem in the Euclidean plane. Networks 15:323–345
Winter P (1986) Generalized Steiner problem in series-parallel networks. J Algorithms 7:549–566
Winter P (1987) Steiner problems in networks: A survey. Networks 17:129–167
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Cieslik, D. (2008). Network Design Problems . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_437
Download citation
DOI: https://doi.org/10.1007/978-0-387-74759-0_437
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-74758-3
Online ISBN: 978-0-387-74759-0
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering