Article Outline
Keywords and Phrases
Introduction
Turnpike Theory
Statistical Cluster Points and Statistical Convergence
Problem 1
Problem 2
A Challenging Problem
See also
References
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buck RC (1953) Generalized asymptotic density. Am J Math 75:335–346
Connor JS (1988) The statistical and strong p-Cesaro convergence of sequences. Analysis 8:47–63
Dorfman R, Samuelson PA, Solow RM (1958) Linear Programming and Economic Analysis. McGraw Hill, New York
Fast H (1951) Sur la convergence statistique. Colloq Math 2:241–244
Fridy JA (1985) On statistical convergence. Analysis 5:301–313
Fridy JA (1993) Statistical limit points. Proc Am Math Soc 4:1187–1192
Maddox IJ (1988) Statistical convergence in a locally convex sequence space. Math Proc Camp Phil Soc 104:141–145
Makarov VL, Rubinov AM (1977) Mathematical Theory of Economic Dynamics and Equilibria. Springer, New York
Mamedov MA (1985) Asymptotical optimal paths in models with environment pollution being taken into account. Optimization, Novosibirsk 36(53):101–112
Mamedov MA (1992) Turnpike theorems in continuous systems with integral functionals. Russ Acad Sci Dokl Math 45(2):432–435
Mamedov MA (1993) Turnpike theorems for integral functionals. Russ Acad Sci Dokl Math 46(1):174–177
Mamedov MA (2003) Turnpike Theorem for Continuous-time Control Systems when Optimal Stationary Point is not unique. Abstr Appl Anal 11:631–650
Mamedov MA, Borisov KY (1988) A simple model of economic grow and pollution control. Vestn Leningr Univ, 5(5):120–124
Mamedov MA, Pehlivan S (2000) Statistical convergence of optimal paths. Math Jpn 52(1):51–55
Mamedov MA, Pehlivan S (2001) Statistical cluster points and turnpike theorem in nonconvex problems. J Math Anal Appl 256:686–693
McKenzie LW (1976) Turnpike theory. Econometrica 44:841–866
von Neumann J (1945–1946) A Model of General Economic Equilibrium. Rev Econ Stud 13:1–9
Panasyuk AI, Panasyuk VI (1986) Asymptotic turnpike optimization of control systems. Nauka Techn
Pehlivan S, Mamedov MA (2000) Statistical cluster points and turnpike. Optimization 48:93–106
Rockafellar RT (1973) Saddle points of Hamiltonian systems in convex problems of Lagrange. J Optim Theory Appl 12:367–390
Rockafellar RT (1976) Saddle points of Hamiltonian systems in convex problems having a nonzero discount rate. J Econ Theory 12:71–113
Śalăt T (1980) On statistically convergent sequences of real numbers. Math Slovaca 30:139–150
Steinhaus H (1951) Sur la convergence ordinarie et la convergence asymptotique. Colloq Math 2:73–74
Scheinkman JA (1976) On optimal steady states of n-sector growth models when utility is discounted. J Econ Theory 12:11–30
Zaslavski A (2005) Turnpike Properties in the Calculus of Variations and Optimal Control. Series: Nonconvex Optimization and Its Applications, vol 80 XXII. Springer, New York, p 396
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Mammadov (Mamedov), M. (2008). Statistical Convergence and Turnpike Theory . In: Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74759-0_643
Download citation
DOI: https://doi.org/10.1007/978-0-387-74759-0_643
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-74758-3
Online ISBN: 978-0-387-74759-0
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering