Abstract
Ontology is the basis of sharing and reusing knowledge on the Semantic Web, and ontology-based semantic retrieval is a hotspot of current research. Fuzzy ontology is an extension of domain ontology for solving the uncertainty problems. To represent fuzzy knowledge more effectively, this paper presents a new series of fuzzy ontology models that consists of fuzzy domain ontology and fuzzy linguistic variable ontologies, considering semantic relationships of concepts, including set relation, order relation, equivalence relation and semantic association relation etc. The process to construct linguistic variables ontology is discussed. Using ontology and RDFS, the knowledge model for product information is created. To achieve semantic retrieval, the semantic query expansion in SeRQL is constructed by semantic relations between fuzzy concepts. The application shows that these models can overcome the localization of other fuzzy ontology models, and this research facilitates the fuzzy knowledge sharing and semantic retrieval on the Semantic Web.
Chapter PDF
Similar content being viewed by others
Keywords
- Membership Function
- Information Retrieval
- Resource Description Framework
- Semantic Relation
- Linguistic Variable
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Fensel D., F. van Harmelen, Horrocks I., D.L.McGuinness, and Patel-Schneider P. F., “OIL: an ontology infrastructure for the semantic web”, IEEE Intelligent Systems, vol. 16 , no. 2, 2001, p. 38–45.
Widyantoro D. H., Yen J., “A fuzzy ontology-based abstract search engine and its user studies”, in: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia, 2001, p. 1291–1294.
Lee C. S., Jian Z. W., and Huang L. K., “A fuzzy ontology and its application to news summarization”, IEEE Transactions on Systems, Man and Cybernetics (Part B), vol. 35, no. 5, 2005, p. 859–880.
Tho Q. T., Hui S. C., Fong A. C. M., and Cao T. H., “Automatic fuzzy ontology generation for semantic web”, IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 6, 2006, p. 842–856.
Abulaish M., Dey L., “A fuzzy ontology generation framework for handling uncertainties and nonuniformity in domain knowledge description”, in: Proceedings of 2007 International Conference on Computing: Theory and Applications, Kolkata, 2007, p. 287–293.
Kang D. Z., Xu B. W., Lu J. J., Li Y. H., “Description logics for fuzzy ontologies on semantic web”, Journal of Southeast University (English Edition), vol. 22, no. 3, 2006, p. 343–347.
Calegari S., Ciucci D., “Fuzzy ontology and fuzzy-OWL in the KAON project”, in: Proceedings of 2007 IEEE International Conference on Fuzzy Systems Conference, London, UK, 2007, p.1–6.
Jun Zhai, Yan Chen, Qinglian Wang, and Miao Lv, “Fuzzy Ontology Models Using Intuitionistic Fuzzy Set for Knowledge Sharing on the Semantic Web”, in: Proceedings of the 12th International Conference on Computer Supported Cooperative Work in Design (CSCWD 2008)(volume 1), 2008, IEEE Press, p.465–469.
Lu X. W., Jiang F., Hou L. W., “Customer features extraction based on customer ontology”, Computer Engineering, vol. 31, no. 5, 2005, p. 31–33. (in Chinese)
John W.T. Lee, Alex K.S. Wong, “Information retrieval based on semantic query on RDF annotated resources”, in Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics, 2004, p. 3220–3225.
B. V. Aduna, “The SeRQL query language,” http://www.openrdf.org/doc/sesame/users/ch06.html#d0el977, 2002.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 IFIP International Federation for Information Processing
About this paper
Cite this paper
Zhai, J., Liang, Y., Jiang, J., Yu, Y. (2008). Fuzzy Ontology Models Based on Fuzzy Linguistic Variable for Knowledge Management and Information Retrieval. In: Shi, Z., Mercier-Laurent, E., Leake, D. (eds) Intelligent Information Processing IV. IIP 2008. IFIP – The International Federation for Information Processing, vol 288. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87685-6_9
Download citation
DOI: https://doi.org/10.1007/978-0-387-87685-6_9
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-87684-9
Online ISBN: 978-0-387-87685-6
eBook Packages: Computer ScienceComputer Science (R0)