Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Page Similarity and Classification

  • Reference work entry
  • First Online:
Handbook of Document Image Processing and Recognition

Abstract

Document analysis and recognition techniques address several types of documents ranging from small pieces of information such as forms to larger items such as maps. In most cases, humans are capable of discerning the type of document and therefore its function without reading the actual textual content. This is possible because the layout of one document often reflects its type. For instance, invoices are more visually similar to one another than they are to technical papers and vice versa. Two related tasks, page classification and page retrieval, are based on the analysis of the visual similarity between documents and are addressed in this chapter. These tasks are analyzed in this chapter in a unified perspective because they share several technical features and are sometimes adopted in common applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altamura O, Esposito F, Malerba D (2001) Transforming paper documents into XML format with WISDOM++. Int J Doc Anal Recognit 4(1):2–17

    Article  Google Scholar 

  2. Appiani E, Cesarini F, Colla AM, Diligenti M, Gori M, Marinai S, Soda G (2001) Automatic document classification and indexing in high-volume applications. Int J Doc Anal Recognit 4(2):69–83

    Article  Google Scholar 

  3. Arlandis J, Perez-Cortes J-C, Ungria E (2009) Identification of very similar filled-in forms with a reject option. In: Proceedings of the ICDAR, Barcelona, pp 246–250

    Google Scholar 

  4. Bagdanov AD, Worring M (2001) Fine-grained document genre classification using first order random graphs. In: Proceedings of the ICDAR, Seattle, pp 79–83

    Google Scholar 

  5. Bagdanov AD, Worring M (2003) First order Gaussian graphs for efficient structure classification. Pattern Recognit 36(3):1311–1324

    Article  Google Scholar 

  6. Bagdanov AD, Worring M (2003) Multi-scale document description using rectangular granulometries. Int J Doc Anal Recognit 6:181–191

    Article  Google Scholar 

  7. Baldi S, Marinai S, Soda G (2003) Using tree-grammars for training set expansion in page classification. In: Proceedings of the ICDAR, Edinburgh, pp 829–833

    Google Scholar 

  8. Cesarini F, Gori M, Marinai S, Soda G (1999) Structured document segmentation and representation by the modified X-Y tree. In: ICDAR, Bangalore, pp 563–566

    Google Scholar 

  9. Cesarini F, Lastri M, Marinai S, Soda G (2001) Encoding of modified X-Y trees for document classification. In: Proceedings of the ICDAR, Seattle, pp 1131–1136

    Google Scholar 

  10. Cesarini F, Lastri M, Marinai S, Soda G (2001) Page classification for meta-data extraction from digital collections. In: Mayr HC et al (eds) Database and expert systems applications. LNCS 2113. Springer, Berlin/New York, pp 82–91

    Google Scholar 

  11. Cesarini F, Marinai S, Soda G (2002) Retrieval by layout similarity of documents represented with MXY trees. In: Lopresti D, Hu J, Kashi R (eds) International workshop on document analysis systems, Princeton. LNCS 2423. Springer, pp 353–364

    Google Scholar 

  12. Chen N, Blostein D (2007) A survey of document image classification: problem statement, classifier architecture and performance evaluation. Int J Doc Anal Recognit 10(1):1–16

    Article  Google Scholar 

  13. Chen F, Girgensohn A, Cooper M, Lu Y, Filby G (2012) Genre identification for office document search and browsing. Int J Doc Anal Recognit 15:167–182. doi:10.1007/s10032-011-0163-7

    Article  Google Scholar 

  14. Chetverikov D, Liang J, Komuves J, Haralick RM (1996) Zone classification using texture features. In: International conference on pattern recognition, Vienna, pp 676–680

    Google Scholar 

  15. Collins-Thompson K, Nickolov R (2002) A clustering-based algorithm for automatic document separation. In: Proceedings of the SIGIR workshop on information retrieval and OCR, Tampere

    Google Scholar 

  16. Cullen JF, Hull JJ, Hart PE (1997) Document image database retrieval and browsing using texture analysis. In: Proceedings of the ICDAR, Ulm, pp 718–721

    Google Scholar 

  17. Dengel A (1993) Initial learning of document structure. In: Proceedings of the ICDAR, Tsukuba, pp 86–90

    Google Scholar 

  18. Dengel A, Dubiel F (1995) Clustering and classification of document structure-a machine learning approach. In: Proceedings of the ICDAR, Montreal, pp 587–591

    Google Scholar 

  19. Diligenti M, Frasconi P, Gori M (2003) Hidden Tree Markov models for document image classification. IEEE Trans Pattern Anal Mach Intell 25(4):519–523

    Article  Google Scholar 

  20. Doermann D (1998) The indexing and retrieval of document images: a survey. Comput Vis Image Underst 70(3):287–298

    Article  Google Scholar 

  21. Duygulu P, Atalay V (2002) A hierarchical representation of form documents for identification and retrieval. Int J Doc Anal Recognit 5(1):17–27

    Article  Google Scholar 

  22. Ford G, Thoma GR (2003) Ground truth data for document image analysis. In: Proceedings of the symposium on document image understanding and technology, Greenbelt, pp 199–205

    Google Scholar 

  23. Gordo A, Valveny E (2009) A rotation invariant page layout descriptor for document classification and retrieval. In: Proceedings of the ICDAR, Barcelona, pp 481–485

    Google Scholar 

  24. Gordo A, Gibert J, Valveny E, Rusi\(\mathrm{\tilde{n}}\)ol M (2010) A kernel-based approach to document retrieval. In: International workshop on document analysis systems, Boston, pp 377–384

    Google Scholar 

  25. Hu J, Kashi R, Wilfong G (1999) Document image layout comparison and classification. In: Proceedings of the ICDAR, Bangalore, pp 285–288

    Google Scholar 

  26. Hu J, Kashi R, Wilfong G (2000) Comparison and classification of documents based on layout similarity. Inf Retr 2:227–243

    Article  Google Scholar 

  27. Huang M, DeMenthon D, Doermann D, Golebiowski L (2005) Document ranking by layout relevance. In: Proceedings of the ICDAR, Seoul, pp 362–366

    Google Scholar 

  28. Indermuhle E, Bunke H, Shafait F, Breuel T (2010) Text versus non-text distinction in online handwritten documents. In: SAC, Sierre, pp 3–7

    Google Scholar 

  29. Ishitani Y (2000) Flexible and robust model matching based on association graph for form image understanding. Pattern Anal Appl 3(2):104–119

    Article  Google Scholar 

  30. Jain AK, Liu J (2000) Image-based form document retrieval. Pattern Recognit 33:503–513

    Article  Google Scholar 

  31. Kochi T, Saitoh T (1999) User-defined template for identifying document type and extracting information from documents. In: ICDAR, Bangalore, pp 127–130

    Google Scholar 

  32. Lecerf L, Chidlovskii B (2010) Scalable indexing for layout based document retrieval and ranking. ACM Symposium on Applied Computing, Sierre, pp 28–32

    Google Scholar 

  33. Lin JY, Lee C-W, Chen Z (1996) Identification of business forms using relationships between adjacency frames. MVA 9(2):56–64

    Google Scholar 

  34. Mao S, Nie L, Thoma GR (2005) Unsupervised style classification of document page images. IEEE International Conference on Image Processing, Genoa, pp 510–513

    Google Scholar 

  35. Marinai S (2006) A survey of document image retrieval in digital libraries. In: 9th colloque international francophone sur l’Ecrit et le document, Fribourg, pp 193–198

    Google Scholar 

  36. Marinai S, Marino E, Soda G (2006) Tree clustering for layout-based document image retrieval. In: Proceedings of the international workshop on document image analysis for libraries 2006, Lyon, pp 243–253

    Google Scholar 

  37. Marinai S, Marino E, Soda G (2010) Table of contents recognition for converting PDF documents in e-book formats. In: Proceedings of the 10th ACM symposium on document engineering (DocEng’10), Manchester. New York, pp 73–76

    Google Scholar 

  38. Marinai S, Miotti B, Soda G (2011) Digital libraries and document image retrieval techniques: a survey. In: Biba M, Xhafa F (eds) Learning structure and schemas from documents. Volume 375 of studies in computational intelligence. Springer, Berlin/Heidelberg, pp 181–204

    Chapter  Google Scholar 

  39. Peng H, Long F, Chi Z, Siu W-C (2001) Document image template matching based on component block list. PRL 22:1033–1042

    Article  Google Scholar 

  40. Peng H, Long F, Chi Z (2003) Document image recognition based on template matching of component block projections. IEEE Trans Pattern Anal Mach Intell 25(9):1188–1192

    Article  Google Scholar 

  41. Perea I, Lṕez D (2004) Syntactic modeling and recognition of document image. In: SSPR&SPR, Lisbon, pp 416–424

    Google Scholar 

  42. Qi X, Davison BD (2009) Web page classification: features and algorithms. ACM Comput Surv 41:12:1–12:31

    Article  Google Scholar 

  43. Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34:1–47

    Article  Google Scholar 

  44. Shih FY, Chen SS (1996) Adaptive document block segmentation and classification. IEEE Trans SMC 26(5):797–802

    Google Scholar 

  45. Shin C, Doermann DS, Rosenfeld A (2001) Classification of document pages using structure-based features. Int J Doc Anal Recognit 3(4):232–247

    Article  Google Scholar 

  46. Takama Y, Mitsuhashi N (2005) Visual similarity comparison for web page retrieval. In: IEEE/WIC/ACM international conference on web intelligence (WI 2005), Compiegne, pp 301–304

    Google Scholar 

  47. Taylor SL, Fritzson R, Pastor JA (1992) Extraction of data from preprinted forms. MVA 5(5):211–222

    Google Scholar 

  48. Taylor SL, Lipshutz M, Nilson RW (1995) Classification and functional decomposition of business documents. In: ICDAR 95, Montreal, pp 563–566

    Google Scholar 

  49. Tzacheva A, El-Sonbaty Y, El-Kwae EA (2002) Document image matching using a maximal grid approach. Document Recognition and Retrieval IX, San Jose, pp 121–128

    Google Scholar 

  50. van Beusekom J, Keysers D, Shafait F, Breuel TM (2006) Distance measures for layout-based document image retrieval. In: Proceedings of the international workshop on document image analysis for libraries 2006, Lyon, pp 232–242

    Google Scholar 

  51. Wang JT-L, Zhang K, Jeong K, Shasha D (1994) A system for approximate tree matching. IEEE Trans Knowl Data Eng 6(4):559–571

    Article  Google Scholar 

  52. Wang Y, Phillips IT, Haralick RM (2006) Document zone content classification and its performance evaluation. Pattern Recognit 39:57–73

    Article  Google Scholar 

  53. Wei C-S, Liu Q, Wang JT-L, Ng PA (1997) Knowledge discovering for document classification using tree matching in TEXPROS. Inf Sci 100(1–4):255–310

    Article  Google Scholar 

  54. Zhang K, Shasha D (1989) Simple fast algorithms for the editing distance between trees and related problems. SIAM J Comput 18(6):1245–1262

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Marinai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Marinai, S. (2014). Page Similarity and Classification. In: Doermann, D., Tombre, K. (eds) Handbook of Document Image Processing and Recognition. Springer, London. https://doi.org/10.1007/978-0-85729-859-1_7

Download citation

Publish with us

Policies and ethics