Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Design and Evaluation of Cross-Domain Recommender Systems

  • Chapter
  • First Online:
Recommender Systems Handbook

Abstract

The proliferation of e-commerce sites and online social media has allowed users to provide preference feedback and maintain profiles in multiple systems, reflecting a spectrum of their tastes and interests. Leveraging all the user preferences available in several systems or domains may be beneficial for generating more encompassing user models and better recommendations, e.g., through mitigating the cold-start and sparsity problems, or enabling cross-selling recommendations for items from multiple domains. Cross-domain recommender systems, thus, aim to enhance recommendations in a target domain by exploiting knowledge from source domains. In this chapter, we formalize the cross-domain recommendation problem, unify the perspectives from which it has been addressed, and analytically categorize and describe various recommendation techniques, from the simple legacy ones to the sophisticated ones based on deep-learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The reader is referred to Chap. 29 for an extensive discussion on the different methods used to evaluate recommender systems.

References

  1. F. Abel, S. Araújo, Q. Gao, G.-J. Houben, Analyzing cross-system user modeling on the social web, in 11th International Conference on Web Engineering, pp. 28–43 (2011)

    Google Scholar 

  2. F. Abel, E. Helder, G.-J. Houben, N. Henze, D. Krause, Cross-system user modeling and personalization on the social web. User Model. User Adap. Inter. 23(2-3), 169–209 (2013)

    Article  Google Scholar 

  3. S. Berkovsky, T. Kuflik, F. Ricci, Entertainment personalization mechanism through cross-domain user modeling, in 1st International Conference on Intelligent Technologies for Interactive Entertainment, pp. 215–219 (2005)

    Google Scholar 

  4. S. Berkovsky, T. Kuflik, F. Ricci, Cross-domain mediation in collaborative filtering, in 11th International Conference on User Modeling, pp. 355–359 (2007)

    Google Scholar 

  5. S. Berkovsky, T. Kuflik, F. Ricci, Distributed collaborative filtering with domain specialization, in 1st ACM Conference on Recommender Systems, pp. 33–40 (2007)

    Google Scholar 

  6. S. Berkovsky, T. Kuflik, F. Ricci, Mediation of user models for enhanced personalization in recommender systems. User Model. User Adap. Inter. 18(3), 245–286 (2008)

    Article  Google Scholar 

  7. M. Braunhofer, M. Kaminskas, F. Ricci, Location-aware music recommendation. Int. J. Multimedia Inf. Retr. 2(1), 31–44 (2013)

    Article  Google Scholar 

  8. I. Cantador, I. Fernández-Tobías, S. Berkovsky, P. Cremonesi, Cross-domain recommender systems. Recommender Systems Handbook, 2nd edn. (Springer, 2015), pp. 919–959

    Google Scholar 

  9. F. Carmagnola, F. Cena, User identification for cross-system personalisation. Information Sciences 179(1-2), 16–32 (2009)

    Article  Google Scholar 

  10. F. Carmagnola, F. Cena, C. Gena, User model interoperability: A survey. User Model. User Adap. Inter. 21(3), 285–331 (2011)

    Article  Google Scholar 

  11. B. Cao, N.N. Liu, Q. Yang, Transfer learning for collective link prediction in multiple heterogeneous domains, in 27th International Conference on Machine Learning, pp. 159–166 (2010)

    Google Scholar 

  12. R. Chung, D. Sundaram, A. Srinivasan, Integrated personal recommender systems, in 9th International Conference on Electronic Commerce, pp. 65–74 (2007)

    Google Scholar 

  13. P.T. Costa, R.R. McCrae, Revised NEO personality inventory (NEO-PI-R) and NEO five-factor inventory (NEO-FFI) manual. Psychol. Assess. Resour. (1992)

    Google Scholar 

  14. P. Cremonesi, A. Tripodi, R. Turrin, Cross-domain recommender systems, in 11th IEEE International Conference on Data Mining Workshops, pp. 496–503 (2011)

    Google Scholar 

  15. P. Cremonesi, M. Quadrana, Cross-domain recommendations without overlapping data: myth or reality? in 8th ACM Conference on Recommender Systems (2014)

    Google Scholar 

  16. C. Ding, T. Li, W. Peng, H. Park, Orthogonal nonnegative matrix tri-factorizations for clustering, in 12th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)

    Google Scholar 

  17. R. Driskill, J. Riedl, Recommender systems for E-commerce: Challenges and opportunities, in AAAI’99 Workshop on Artificial Intelligence for Electronic Commerce, pp. 73–76 (1999)

    Google Scholar 

  18. M. Enrich, M. Braunhofer, F. Ricci, Cold-start management with cross-domain collaborative filtering and tags, in 14th International Conference on E-Commerce and Web Technologies, pp. 101–112 (2013)

    Google Scholar 

  19. M.D. Ekstrand, R. Burke, F. Diaz, Fairness and discrimination in recommendation and retrieval, in Proceedings of the 13th ACM Conference on Recommender Systems, pp. 576–577 (2019)

    Google Scholar 

  20. A. Farseev, I. Samborskii, A. Filchenkov, T. Chua, Cross-domain recommendation via clustering on multi-layer graphs, in 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 195–204 (2017)

    Google Scholar 

  21. I. Fernández-Tobías, I. Cantador, M. Kaminskas, F. Ricci, A generic semantic-based framework for cross-domain recommendation, in 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, pp. 25–32 (2011)

    Google Scholar 

  22. I. Fernández-Tobías, I. Cantador, M. Kaminskas, F. Ricci, Cross-domain recommender systems: A survey of the state of the art, in 2nd Spanish Conference on Information Retrieval, pp. 187–198 (2012)

    Google Scholar 

  23. I. Fernández-Tobías, I. Cantador, Exploiting social tags in matrix factorization models for cross-domain collaborative filtering, in 1st International Workshop on New Trends in Content-based Recommender Systems (2013)

    Google Scholar 

  24. M. Ferrari Dacrema, S. Boglio, P. Cremonesi, D. Jannach, A troubling analysis of reproducibility and progress in recommender systems research. ACM Trans. Inf. Syst. 39(2) 49 p. (2021)

    Google Scholar 

  25. M. Ferrari Dacrema, P. Cremonesi, D. Jannach, Are we really making much progress? A worrying analysis of recent neural recommendation approaches, in 13th ACM Conference on Recommender Systems, pp. 101–109 (2019)

    Google Scholar 

  26. M. Ferrari Dacrema, F. Parroni, P. Cremonesi, D. Jannach, Critically examining the claimed value of convolutions over user-item embedding maps for recommender systems, in 29th ACM International Conference on Information & Knowledge Management, pp. 355–363 (2020)

    Google Scholar 

  27. J. Freyne, S. Berkovsky, G. Smith, Evaluating recommender systems for supportive technologies, in User Modeling and Adaptation for Daily Routines, pp. 195–217 (2013)

    Google Scholar 

  28. W. Fu, Z. Peng, S. Wang, Y. Xu, J. Li, Deeply fusing reviews and contents for cold start users in cross-domain recommendation systems, in 33rd AAAI Conference on Artificial Intelligence, pp. 94–101 (2019)

    Google Scholar 

  29. C. Gao, C. Huang, Y. Yu, H. Wang, Y. Li, D. Jin, Privacy-preserving cross-domain location recommendation. Proc. ACM Interactive Mobile Wearable Ubiquit. Technol. 3(1), 1–21 (2019)

    Google Scholar 

  30. S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari, J. Guo, Cross-domain recommendation via cluster-level latent factor model, in 17th and 24th European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 161–176 (2013)

    Google Scholar 

  31. M. He, J. Zhang, P. Yang, K. Yao, Robust transfer learning for cross-domain collaborative filtering using multiple rating patterns approximation, in 11th International Conference on Web Search and Data Mining, WSDM, pp. 225–233 (2018)

    Google Scholar 

  32. J.L. Helocker, J.A. Konstan, L.G. Terveen, J. Riedl, Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  33. L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, C. Zhu, Personalized recommendation via cross-domain triadic factorization, in 22nd International Conference on World Wide Web, pp. 595–606 (2013)

    Google Scholar 

  34. G. Hu, Y. Zhang, Q. Yang, Transfer meets hybrid: A synthetic approach for cross-domain collaborative filtering with text, in The World Wide Web Conference 2019, pp. 2822–2829 (2019)

    Article  Google Scholar 

  35. D. Jannach, P. Cremonesi, M. Quadrana, Session-based recommender systems. Recommender Systems Handbook, 3nd edn. (Springer, 2021)

    Google Scholar 

  36. S. Jialin Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  37. M. Kaminskas, I. Fernández-Tobías, F. Ricci, I. Cantador, Ontology-based identification of music for places, in 13th International Conference on Information and Communication Technologies in Tourism, pp. 436–447 (2013)

    Google Scholar 

  38. S. Kang, J. Hwang, D. Lee, H. Yu, Semi-supervised learning for cross-domain recommendation to cold-start users, in 28th ACM International Conference on Information and Knowledge Management, CIKM, pp. 1563–1572 (2019)

    Google Scholar 

  39. M. Khan, R. Ibrahim, I. Ghani, Cross domain recommender systems: A systematic literature review. ACM Comput. Surv. 36:1–36:34 (2017)

    Google Scholar 

  40. B. Kitts, D. Freed, M. Vrieze, Cross-sell: A fast promotion-tunable customer-item recommendation method based on conditionally independent probabilities, in 6th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 437–446 (2000)

    Google Scholar 

  41. Y. Koren, Factorization meets the neighborhood: A multifaceted collaborative filtering model, in 14th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 426–434 (2008)

    Google Scholar 

  42. C.H. Lee, Y.H. Kim, P.K. Rhee, Web personalization expert with combining collaborative filtering and association rule mining technique. Expert Syst. Appl. 21(3), 131–137 (2001)

    Article  Google Scholar 

  43. B. Li, Cross-domain collaborative filtering: A brief survey, in 23rd IEEE International Conference on Tools with Artificial Intelligence, pp. 1085–1086 (2011)

    Google Scholar 

  44. B. Li, Q. Yang, X. Xue, Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction, in 21st International Joint Conference on Artificial Intelligence, pp. 2052–2057 (2009)

    Google Scholar 

  45. B. Li, Q. Yang, X. Xue, Transfer learning for collaborative filtering via a rating-matrix generative model, in 26th International Conference on Machine Learning, pp. 617–624 (2009)

    Google Scholar 

  46. B. Li, X. Zhu, R. Li, C. Zhang, X. Xue, X. Wu, Cross-domain collaborative filtering over time, in 22nd International Joint Conference on Artificial Intelligence, pp. 2293–2298 (2011)

    Google Scholar 

  47. P. Li, A. Tuzhilin, DDTCDR: Deep dual transfer cross domain recommendation, in 13th ACM International Conference on Web Search and Data Mining, pp. 331–339 (2020)

    Google Scholar 

  48. J. Lian, F. Zhang, X. Xie, G. Sun, CCCFNet: A content-boosted collaborative filtering neural network for cross domain recommender systems, in 26th International Conference on World Wide Web Companion, pp. 817–818 (2017)

    Google Scholar 

  49. B. Liu, Y. Wei, Y. Zhang, Z. Yan, Q. Yang, Transferable contextual bandit for cross-domain recommendation, in 32nd Conference on Artificial Intelligence (AAAI), pp. 3619–3626 (2018)

    Google Scholar 

  50. J. Liu, P. Zhao, F. Zhuang, Y. Liu, V. Sheng, J. Xu, X. Zhou, H. Xiong, Exploiting aesthetic preference in deep cross networks for cross-domain recommendation, in The Web Conference 2020, pp. 2768–2774 (2020)

    Google Scholar 

  51. A. Loizou, How to recommend music to film buffs: enabling the provision of recommendations from multiple domains. Ph.D. thesis, University of Southampton (2009)

    Google Scholar 

  52. B. Loni, Y. Shi, M.A. Larson, A. Hanjalic, Cross-domain collaborative filtering with factorization machines, in 36th European Conference on Information Retrieval (2014)

    Google Scholar 

  53. Y. Low, D. Agarwal, A.J. Smola, Multiple domain user personalization, in 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 123–131 (2011)

    Google Scholar 

  54. M. Ludewig, N. Mauro, S. Latifi, D. Jannach, Empirical analysis of session-based recommendation algorithms. User Model. User Adap. Inter., 1–33 (2020)

    Google Scholar 

  55. M. Ma, P. Ren, Y. Lin, Z. Chen, J. Ma, M. De Rijke, π-Net: A parallel information-sharing network for shared-account cross-domain sequential recommendations, in 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 685–694 (2019)

    Google Scholar 

  56. T. Man, H. Shen, X. Jin, X. Cheng, Cross-domain recommendation: An embedding and mapping approach, in 26th International Joint Conference on Artificial Intelligence, IJCAI, pp. 2464–2470 (2017)

    Google Scholar 

  57. O. Moreno, B. Shapira, L. Rokach, G. Shani, TALMUD: transfer learning for multiple domains, in 21st ACM Conference on Information and Knowledge Management, pp. 425–434 (2012)

    Google Scholar 

  58. M. Nakatsuji, Y. Fujiwara, A. Tanaka, T. Uchiyama, T. Ishida, Recommendations over domain specific user graphs, in 19th European Conference on Artificial Intelligence, pp. 607–612 (2010)

    Google Scholar 

  59. S.J. Pan, J.T. Kwok, Q. Yang, Transfer learning via dimensionality reduction, in 23rd AAAI Conference on Artificial Intelligence, pp. 677–682 (2008)

    Google Scholar 

  60. R. Pagano, P. Cremonesi, M. Larson, B. Hidasi, D. Tikk, A. Karatzoglou, M. Quadrana, The contextual turn: From context-aware to context-driven recommender systems, in 10th ACM Conference on Recommender Systems, pp. 249–252 (2016)

    Google Scholar 

  61. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  62. W. Pan, N.N. Liu, E.W. Xiang, Q. Yang, Transfer learning to predict missing ratings via heterogeneous user feedbacks, in 22nd International Joint Conference on Artificial Intelligence, pp. 2318–2323 (2011)

    Google Scholar 

  63. W. Pan, E.W. Xiang, N.N. Liu, Q. Yang, Transfer learning in collaborative filtering for sparsity reduction, in 24th AAAI Conference on Artificial Intelligence, pp. 210–235 (2010)

    Google Scholar 

  64. W. Pan, E.W. Xiang, Q. Yang, Transfer learning in collaborative filtering with uncertain ratings, in 26th AAAI Conference on Artificial Intelligence, pp. 662–668 (2012)

    Google Scholar 

  65. Z. Ren, L. Zhao, J. Ma, M. de Rijke, Mixed information flow for cross-domain sequential recommendations. ACM Trans. Knowl. Discov. Data 1(1), (2020)

    Google Scholar 

  66. S. Rendle, Factorization machines with libFM. ACM Trans. Intell. Syst. Tech. 3(3), 1–22 (2012)

    Article  Google Scholar 

  67. S. Sahebi, P. Brusilovsky, Cross-domain collaborative recommendation in a cold-start context: The impact of user profile size on the quality of recommendation, in 21st International Conference on User Modeling, Adaptation, and Personalization, pp. 289–295 (2013)

    Google Scholar 

  68. G. Shani, A. Gunawardana, Evaluating recommendation systems. Recommender Systems Handbook, pp. 257–297 (2011)

    Google Scholar 

  69. B. Shapira, L. Rokach, S. Freilikhman, Facebook single and cross domain data for recommendation systems. User Model. User Adap. Inter. 23(2-3), 211–247 (2013)

    Article  Google Scholar 

  70. Y. Shi, M. Larson, A. Hanjalic, Tags as bridges between domains: Improving recommendation with Tag-induced cross-domain collaborative filtering, in 19th International Conference on User Modeling, Adaption, and Personalization, pp. 305–316 (2011)

    Google Scholar 

  71. A. Stewart, E. Diaz-Aviles, W. Nejdl, L.B. Marinho, A. Nanopoulos, L. Schmidt-Thieme, Cross-tagging for personalized open social networking, in 20th ACM Conference on Hypertext and Hypermedia, pp. 271–278 (2009)

    Google Scholar 

  72. A. Taneja, A. Arora, Cross domain recommendation using multidimensional tensor factorization. Expert Syst. Appl., 304–316 (2018)

    Google Scholar 

  73. J. Tang, J. Yan, L. Ji, M. Zhang, S. Guo, N. Liu, X. Wang, Z. Chen, Collaborative users’ brand preference mining across multiple domains from implicit feedbacks, in 25th AAAI Conference on Artificial Intelligence, pp. 477–482 (2011)

    Google Scholar 

  74. A. Tiroshi, S. Berkovsky, M.A. Kaafar, T. Chen, T. Kuflik, Cross social networks interests predictions based on graph features, in 7th ACM Conference on Recommender Systems, pp. 319–322 (2013)

    Google Scholar 

  75. A. Tiroshi, T. Kuflik, Domain ranking for cross domain collaborative filtering, in 20th International Conference on User Modeling, Adaptation, and Personalization, pp. 328–333 (2012)

    Google Scholar 

  76. D. Vallet, S. Berkovsky, S. Ardon, A. Mahanti, M.A. Kafaar, Characterizing and predicting viral-and-popular video content, in 24th ACM International on Conference on Information and Knowledge Management, pp. 1591–1600 (2015)

    Google Scholar 

  77. C. Wang, M. Niepert, H. Li, RecSys-DAN: Discriminative adversarial networks for cross-domain recommender systems. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2731–2740 (2020)

    Article  Google Scholar 

  78. P. Winoto, T. Tang, If you like the devil wears prada the book, will you also enjoy the devil wears prada the movie? A study of cross-domain recommendations. N. Gener. Comput. 26, 209–225 (2008)

    Google Scholar 

  79. F. Yuan, L. Yao, B. Benatallah, DARec: Deep domain adaptation for cross-domain recommendation via transferring rating patterns, in 28th International Joint Conference on Artificial Intelligence, pp. 4227–4233 (2019)

    Google Scholar 

  80. Y. Zhang, B. Cao, D.-Y. Yeung, Multi-domain collaborative filtering, in 26th Conference on Uncertainty in Artificial Intelligence, pp. 725–732 (2010)

    Google Scholar 

  81. Y. Zang, X. Hu, LKT-FM: A novel rating pattern transfer model for improving non-overlapping cross-domain collaborative filtering, in Machine Learning and Knowledge Discovery in Databases - European Conference, pp. 641–656 (2017)

    Google Scholar 

  82. X. Zhang, J. Cheng, T. Yuan, B. Niu, H. Lu, TopRec: domain-specific recommendation through community topic mining in social network, in 22nd International Conference on World Wide Web, pp. 1501–1510 (2013)

    Google Scholar 

  83. L. Zhao, S.J. Pan, E.W. Xiang, E. Zhong, X. Lu, Q. Yang, Active transfer learning for cross-system recommendation, in 27th AAAI Conference on Artificial Intelligence, pp. 1205–1211 (2013)

    Google Scholar 

  84. C. Zhao, C. Li, R. Xiao, H. Deng, A. Sun, CATN: Cross-domain recommendation for cold-start users via aspect transfer network, in 43rd International ACM SIGIR conference on research and development in Information Retrieval, pp. 229–238 (2020)

    Google Scholar 

  85. F. Zhu, Y. Wang, C. Chen, G. Liu, M. Orgun, A deep framework for cross-domain and cross-system recommendations, in 27th International Joint Conference on Artificial Intelligence, IJCAI, pp. 3711–3717 (2018)

    Google Scholar 

  86. F. Zhu, C. Chen, Y. Wang, G. Liu, X. Zheng, DTCDR: A framework for dual-target cross-domain recommendation, in 28th ACM International Conference on Information and Knowledge Management, pp. 1533–1542 (2019)

    Google Scholar 

  87. F. Zhuang, P. Luo, H. Xiong, Y. Xiong, Q. He, Z. Shi, Cross-domain learning from multiple sources: A consensus regularization perspective. IEEE Trans. Knowl. Data Eng. 22(12), 1664–1678 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Cremonesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Cite this chapter

Dacrema, M.F., Cantador, I., Fernández-Tobías, I., Berkovsky, S., Cremonesi, P. (2022). Design and Evaluation of Cross-Domain Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2197-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2197-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-2196-7

  • Online ISBN: 978-1-0716-2197-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics