Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Art of Mathematical Rationality

  • Chapter
Leibniz: What Kind of Rationalist?

Part of the book series: Logic, Epistemology, and The Unity Of Science ((LEUS,volume 13))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Breger, H. 1986: Leibniz’ Einführung des Transzendenten. In A. Heinekamp (ed.), 300 Jahre Nova Methodus von G. W. Leibniz (1684–1984) (= Sonderheft 14, Studia Leibnitiana). Stuttgart: Franz Steiner, pp. 119–132.

    Google Scholar 

  • Breger, H. 1989: Symmetry in Leibnizian Physics. In The Leibniz Renaissance. International Workshop Firenze, 2–5 giugno 1986. Firenze: Leo S. Olschki, pp. 23–42.

    Google Scholar 

  • Breger, H. 1990: Der Ähnlichkeitsbegriff bei Leibniz. In A. Heinekamp, W. Lenzen, and M. Schneider (eds.), Mathesis rationis. Festschrift für Heinrich Schepers. Münster: Nodus, pp. 223–232.

    Google Scholar 

  • Breger, H. 1992: Le continu chez Leibniz. In J.-M. Salanskis and H. Sinaceur (eds.), Le Labyrinthe du Continu. Paris: Springer France, pp. 76–84.

    Google Scholar 

  • Breger, H. 1994: Die mathematisch-physikalische Schönheit bei Leibniz. Revue Internationale de Philosophie 48: 127–140.

    Google Scholar 

  • Breger, H. 1999: Analysis und Beweis. Internationale Zeitschrift fürPhilosophie: 95–116.

    Google Scholar 

  • Descartes, R. 1637: Discours de la methode. Leiden: Maire.

    Google Scholar 

  • Descartes, R. 1902: Å’uvres. Edited by Ch. Adam and P Tannery, vol. VI, Paris: Léopold Cerf.

    Google Scholar 

  • Dreyfus, H.L. and Dreyfus, S.E. 1986. Mind over Machine. New York: The Free Press.

    Google Scholar 

  • Fichant, M. 2004: Introduction. L’invention métaphysique. In M. Fichant (ed.), G. W. Leibniz: Discours de métaphysique suivi de Monadologie et autres textes. Paris: Gallimard, pp. 7–140.

    Google Scholar 

  • Jaenecke, P. 2002: Wissensdarstellung bei Leibniz. In F. Hermanni and H. Breger (eds.), Leibniz und die Gegenwart. München: Fink, pp. 89–118.

    Google Scholar 

  • Leibniz, G.W. 1980: Beginn der Determinantentheorie. E. Knobloch (ed.). Hildesheim: Gerstenberg.

    Google Scholar 

  • Polanyi, M. 1958: Personal Knowledge. London: Routledge and Kegan Paul.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Breger, H. (2008). The Art of Mathematical Rationality. In: Dascal, M. (eds) Leibniz: What Kind of Rationalist?. Logic, Epistemology, and The Unity Of Science, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8668-7_9

Download citation

Publish with us

Policies and ethics