Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

The aim of this paper is to present the development of remote learning laboratory for ultrasound medical diagnostics. We demonstrate the implementation of such laboratory using virtual instrument that is built by using standard PC, ultrasonic transducer with tissue like phantom, digitizer (Picoscope ADC 212/100, Picotech Ltd.), function generator (Hameg HM8131-2, Hameg Instruments GmbH) and popular software package LabView (National Instruments Inc.). By controlling the virtual instrument it is possible to excite and receive ultrasound waves in pulse echo mode then process the received echographic signal and get the characteristics of tissue like phantom. The tissue like phantom is characterized with thickness and density also with the speed of waves propagation and attenuation coefficient. The students are motivated by the assignment of the clear task - to identify the material from which the phantom is made. The implemented virtual instrument is based on NI Remote panel technology. This technology allows to access the virtual instrument remotely using internet browse. The lab preparation materials: goal, theory, quizzes are available from e-learning platform Moodle. We expect the students will improve their knowledge of ultrasound tissue characterization using our remote hands-on labwork.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. “John Dewey”, Wikipedia http://en.wikipedia.org/wiki/John Dewey

  2. S. Grober, M. Vetter, B. Eckert and H.-J. Jodl, “Experimenting from a distance—remotely controlled laboratory (RCL)”, Eur. J. Phys., vol. 28, pp. S127-S141, 2007.

    Article  Google Scholar 

  3. Bertrand, Y.; Flottes, M.-L.; Azais, F.; Bernard, S.; Latorre, L.; Lorival, R., “A remote access to engineering test facilities for the distant education of European microelectronics students,” Frontiers in Education, vol. 1, 6-9 Nov. 2002 p. T2E-24 - T2E-29

    Google Scholar 

  4. Sanchez, J.; Dormido, S.; Pastor, R.; Morilla, F; “A Java/Matlab-based environment for remote control system laboratories: illustrated with an inverted pendulum” Education, IEEE Transactions on, vol. 47, Issue 3, Aug. 2004, p 321 – 329

    Article  Google Scholar 

  5. Gao-Wei Chang; Zong-Mu Yeh; Hsiu-Ming Chang; Shih-Yao Pan “Teaching photonics laboratory using remote-control web technologies”; Education, IEEE Transactions on Volume 48, Issue 4, Nov. 2005 Page(s):642 – 651

    Article  Google Scholar 

  6. R. C. Almgren, J. A. Cahow, “Evolving Technologies and Trends for Innovative Online Delivery of Engineering Curriculum”, Intern. J. Online Eng., vol. 1, no. 1, 2005. http://www.i-joe.org/ojs/include/getdoc.php?id=39&article=5&mode=pdf

  7. J. Bourne, D. Harris, F. Mayadas, “Online Engineering Education: Learning Anywhere, Anytime”, J. of Eng. Edu., vol. 94, no. 1, pp. 131–146, January 2005.

    Google Scholar 

  8. J. Garcia-Zubia, D. Lopez-de-Ipina, U. Hernandez, P. Orduna, I, Trueba, “An Approach for WebLabs Analysis”, Intern. J. Online Eng., vol. 3, no. 2, 2007. http://www.i-joe.org/ojs/include/getdoc.php?id=374&article=119&mode=pdf

  9. H. Ewald, G.S. Page, “Performing Experiments by Remote Control Using the Internet”, Global J. of Engng. Educ., vol. 4, no. 3, pp. 287-292, 2000.

    Google Scholar 

  10. Statistics data from Kaunas University of Medicine Hospital, 2003, Kaunas, Lithuania [unpublished].

    Google Scholar 

  11. G. Schmitz, H. Ermert, and T. Senge, “Tissue-Characterization of the Prostate using Radio Frequency Ultrasonic Signals”, IEEE Trans. on Ultrason, Ferroel, and Freq. Control, vol. 46, no.1, January 1999. p. 126– 138.

    Google Scholar 

  12. Pai-Chi Li and Sheng-Wen Huang, “Ultrasound Tomography of the Breast Using Linear Array”, IEEE ICASSP 2005, pp.989-992.

    Google Scholar 

  13. J. E. Hancock, J. C. Cooke, D. T. Chin and M. J. Monaghan, “Determination of Successful Reperfusion After Thrombolysis for Acute Myocardial Infarction: A Noninvasive Method Using Ultrasonic Tissue Characterization That Can Be Applied Clinically”, Circulation, 2002; 105; p.157-161.

    Article  Google Scholar 

  14. Yan Shi, R. S. Witte, and M. O’Donnell, “Identification of Vulnerable Atherosclerotic Plaque Using IVUS-Based Thermal Strain Imaging”, IEEE Trans. on Ultrason, Ferroel, and Freq. Control, vol. 52, no.5, May 2005. p. 844— 850.

    Google Scholar 

  15. L.A. Negron, F. Viola, E.P. Black, C.A. Toth, W.F. Walker, “Development and Characterization of a Vitreous Mimicking Material for Radiation Force Imaging” IEEE Trans. on Ultrason, Ferroel, and Freq. Control, vol. 49, Issue 11, November 2002 p. 1543 – 1551.

    Article  Google Scholar 

  16. Vlad, R.M.; Czarnota, G.J.; Giles, A.; Sherar, M.D.; Hunt, J.W.; Kolios, M.C.; “High frequency ultrasound in monitoring liver suitability for transplantation” Ultrasonics Symposium, 2004 IEEE, vol. 2, 23-27 Aug. 2004, p. 830 – 833, vol.2

    Google Scholar 

  17. C. F. Njeh, T. Fuerst, E. Diessel and H. K. Genant, “Review Article: Is Quantitative Ultrasound Dependent on Bone Structure?” Osteoporos Int. (2001) 12:1–15

    Google Scholar 

  18. Pellaumail, B.; Dewailly, V.; Watrin, A.; Loeuille, D.; Netter, P.; Berger, G.; Saied, A.; “Attenuation coefficient and speed of sound in immature and mature rat cartilage: a study in the 30-70 MHz frequency range,” Ultrasonics Symposium, 1999. Proceedings. 1999 IEEE, vol. 2, 17-20 Oct. 1999 p. 1361 - 1364

    Google Scholar 

  19. Jirik R., Taxt T. and Jan J., “Ultrasound Attenuation Imaging” J. Elec.Eng., vol.55, no.7-8, p. 180-187. 2004.

    Google Scholar 

  20. J. A. Zagzebski, A. Gerig, Q. Chen, H. Tu, Wu Liu, T. Varghese, and T. Hall, “Parametric Imaging Using A Clinical Scanner”, 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, pp. 2165-2168.

    Google Scholar 

  21. National instruments Inc. LabView website, http://www.ni.com/labview/

  22. R. Jurkonis, V. Marozas, A. Lukoševičius, Ultrasound Medical Diagnostics: Practical lab works with virtual instruments (in Lithuanian). Kaunas: Technologija, 2007. ISBN : 978-9955-25-337-2.

    Google Scholar 

  23. Ch. Graciet, B. Hosten, “Simultaneous measurement of speed, attenuation, thickness and density with reflected ultrasonic waves in plates,” Ultrasonics Symposium, pp. 1219-1222, 1994.

    Google Scholar 

  24. J. M. Ferreira, A. M. Cardoso, “A Moodle extension to book online labs”, Intern. J. Online Eng., vol. 1, no. 2, 2005. http://www.i-joe.org/ojs/include/getdoc.php?id=118&article=21&mode=pdf

  25. R. Jurkonis, V.Marozas, and S.Kurapkienė, “Development and evaluation of virtual instrument to supplement ultrasonic echoscope system for ophthalmology,” Ultrasound, [Ultragarsas (in Lithuanian), ISSN 1392-2114,] vol. 1(62), pp. 12-17, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Jurkonis, R., Marozas, V., Lukoševičius, A. (2008). Ultrasound Medical Diagnostics Laboratory for Remote Learning in EVICAB*Campus. In: Iskander, M. (eds) Innovative Techniques in Instruction Technology, E-learning, E-assessment, and Education. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8739-4_80

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8739-4_80

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8738-7

  • Online ISBN: 978-1-4020-8739-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics