Abstract
We study the existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces.
AMS 2010 Subject Classification: 46T99, 47H04, 47H05, 47H09, 47H10, 47J05, 47J25, 49J40
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: A.G. Kartsatos (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50. Marcel Dekker, New York (1996)
Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)
Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Comm. Contemp. Math. 3, 615–647 (2001)
Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)
Bauschke, H.H., Combettes, P.L.: Construction of best Bregman approximations in reflexive Banach spaces. Proc. Amer. Math. Soc. 131, 3757–3766 (2003)
Bauschke, H.H., Wang, X., Yao, L.: General resolvents for monotone operators: characterization and extension. Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, Medical Physics Publishing, Madison, WI, USA, 57–74 (2010)
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)
Bregman, L.M.: The relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. and Math. Phys. 7, 200–217 (1967)
Browder, F.E.: Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces. Arch. Rational. Mech. Anal. 24, 82–90 (1967)
Bruck, R.E.: Nonexpansive projections on subsets of Banach spaces. Pacific J. Math. 47, 341–355 (1973)
Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)
Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Kluwer Academic Publishers, Dordrecht (2000)
Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006, 1–39, Art. ID 84919 (2006)
Butnariu, D., Censor, Y., Reich, S.: Iterative averaging of entropic projections for solving stochastic convex feasibility problems. Comput. Optim. Appl. 8, 21–39 (1997)
Butnariu, D., Iusem, A.N., Resmerita, E.: Total convexity for powers of the norm in uniformly convex Banach spaces. J. Convex Anal. 7, 319–334 (2000)
Censor, Y., Lent, A.: An iterative row-action method for interval convex programmings. J. Optim. Theory Appl. 34, 321–353 (1981)
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)
Halpern, B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73, 957–961 (1967)
Kohsaka, F., Takahashi, W.: Strong convergence of an iterative sequence for maximal monotone operators in a Banach space. Abstr. Appl. Anal. 3, 239–249 (2004)
Kohsaka, F., Takahashi, W.: Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Control Optim. 19, 824–835 (2008)
Kohsaka, F., Takahashi, W.: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. (Basel) 21, 166–177 (2008)
Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)
Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)
Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)
Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)
Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: A.G. Kartsatos (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 313–318. Marcel Dekker, New York (1996)
Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)
Resmerita, E.: On total convexity, Bregman projections and stability in Banach spaces. J. Convex Anal. 11, 1–16 (2004)
Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Amer. Math. Soc 123, 46–63 (1966)
Acknowledgements
The first author was partially supported by the Israel Science Foundation (Grant 647/07), by the Fund for the Promotion of Research at the Technion and by the Technion President’s Research Fund. Both authors are grateful to the referees for many detailed and helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Reich, S., Sabach, S. (2011). Existence and Approximation of Fixed Points of Bregman Firmly Nonexpansive Mappings in Reflexive Banach Spaces. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications(), vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9569-8_15
Download citation
DOI: https://doi.org/10.1007/978-1-4419-9569-8_15
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-9568-1
Online ISBN: 978-1-4419-9569-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)