Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Oxide-Based Photonic Crystals from Biological Templates

  • Chapter
  • First Online:
Functional Metal Oxide Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 149))

Abstract

The world of insects is full of structural colors, lending butterfly wings, bird feathers, and beetle scales their strikingly iridescent appearance. Since many of the structures behind these optical effects are so-called photonic crystals, they have recently attracted the interest of optical engineers and scientists as unique structural templates. This chapter aims to discuss recent developments in replicating biological structures into oxide-based photonic crystals operating at visible frequencies. Following a brief introduction into the physics and properties of photonic crystals, this chapter will focus on the following topics: (1) recent advances and limitations of top-down and bottom-up photonic crystal engineering routes; (2) examples and properties of biological photonic crystals; and (3) conversion of biological structures into oxide-based replicas by deposition methods (atomic layer deposition and conformal-evaporated-film-by-rotation) and sol–gel chemistry routes. The chapter will conclude with an outlook on the potential of biotemplating for achieving complete photonic band gaps at visible frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartl, M.H., Boettcher, S.W., Frindell, K.L., Stucky, G.D.: 3-D molecular assembly of function in titania-based composite material systems. Acc. Chem. Res. 38, 263 (2005)

    CAS  Google Scholar 

  2. Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373 (1997)

    CAS  Google Scholar 

  3. Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813 (2002)

    CAS  Google Scholar 

  4. Soler-illia, G.J.D., Sanchez, C., Lebeau, B., Patarin, J.: Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093 (2002)

    Google Scholar 

  5. Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152 (1998)

    CAS  Google Scholar 

  6. Holland, B.T., Blanford, C.F., Stein, A.: Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538 (1998)

    CAS  Google Scholar 

  7. Davis, M.E., Lobo, R.F.: Zeolite and Molecular-Sieve Synthesis. Chem. Mater. 4, 756 (1992)

    CAS  Google Scholar 

  8. Stucky, G.D., Huo, Q., Firouzi, A., Chmelka, B.F., Schacht, S., Voigt-Martin, I.G., Schuth, F.: Progress in zeolite and microporous materials, studies in surface science and catalysis. In: Chon, H., Ihm, S.-K., Uh, Y.S. (eds.) Directed synthesis of organic/inorganic composite structures, vol. 105. Elsevier, Amsterdam (1996)

    Google Scholar 

  9. Schuth, F., Schmidt, W.: Microporous and mesoporous materials. Adv. Mater. 14, 629 (2002)

    CAS  Google Scholar 

  10. Sanchez, C., Boissiere, C., Grosso, D., Laberty, C., Nicole, L.: Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 20, 682 (2008)

    CAS  Google Scholar 

  11. Wirnsberger, G., Yang, P.D., Scott, B.J., Chmelka, B.F., Stucky, G.D.: Mesostructured materials for optical applications: from low-k dielectrics to sensors and lasers. Spectrochim. Acta A 57, 2049 (2001)

    CAS  Google Scholar 

  12. Bartl, M.H., Stucky, G.D.: Mesostructured thin film oxides. In: Ramanathan, S. (ed.) Thin Film Metal-Oxides, pp. 255–279. Springer, New York (2010)

    Google Scholar 

  13. Scott, B.J., Wirnsberger, G., Stucky, G.D.: Mesoporous and mesostructured materials for optical applications. Chem. Mater. 13, 3140 (2001)

    CAS  Google Scholar 

  14. Marlow, F.: Optical materials based on nanoscaled guest/host composites. Mol. Cryst. Liquid Cryst. 341, 289 (2000)

    CAS  Google Scholar 

  15. Galusha, J.W., Tsung, C.K., Stucky, G.D., Bartl, M.H.: Optimizing sol-gel infiltration and processing methods for the fabrication of high-quality planar titania inverse opals. Chem. Mater. 20, 4925 (2008)

    CAS  Google Scholar 

  16. Imhof, A., Pine, D.J.: Ordered macroporous materials by emulsion templating. Natrue 389, 948 (1997)

    CAS  Google Scholar 

  17. Wijnhoven, J., Vos, W.L.: Preparation of photonic crystals made of air spheres in titania. Science 281, 802 (1998)

    CAS  Google Scholar 

  18. Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light. Princeton Press, Princeton (1995)

    Google Scholar 

  19. Joannopoulos, J.D., Villeneuve, P.R., Fan, S.H.: Photonic crystals: Putting a new twist on light. Nature 386, 143 (1997)

    CAS  Google Scholar 

  20. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    CAS  Google Scholar 

  21. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    CAS  Google Scholar 

  22. John, S.: Localization of light. Phys. Today 44, 32 (2008)

    Google Scholar 

  23. Woldeyohannes, M., John, S.: Coherent control of spontaneous emission near a photonic band edge. J. Opt. B 5, R43 (2003)

    CAS  Google Scholar 

  24. Soukoulis, C.M. (ed.): Photonic Crystals and Light Localization. Kluwer, Dordrecht (2001)

    Google Scholar 

  25. Mason, C.W.: Structural colors in insects I. J. Phys. Chem. 30, 383 (1926)

    CAS  Google Scholar 

  26. Mason, C.W.: Structural colors in insects II. J. Phys. Chem. 31, 321 (1927)

    CAS  Google Scholar 

  27. Doucet, S.M., Meadows, M.G.: Iridescence: a functional perspective. J. R. Soc. Interface 6, S115 (2009)

    Google Scholar 

  28. Seago, A.E., Brady, P., Vigneron, J.P., Schultz, T.D.: Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc. Interface 6, S165 (2009)

    Google Scholar 

  29. Vukusic, P., Sambles, J.R.: Photonic structures in biology. Nature 424, 852 (2003)

    CAS  Google Scholar 

  30. Fan, T.-X., Chow, S.-K., Zhang, D.: Biomorphic mineralization: From biology to materials. Prog. Mater. Sci. 54, 542 (2009)

    CAS  Google Scholar 

  31. Biro, L.P., Kertesz, K., Vertesy, Z., Mark, G.I., Balint, Z., Lousse, V., Vigneron, J.P.: Living photonic crystals: Butterfly scales - nanostructure and optical properties. Mater. Sci. Eng. C 27, 941 (2007)

    CAS  Google Scholar 

  32. Parker, A.R.: Conservative photonic crystals imply indirect transcription from genotype to phenotype. Recent Res. Dev. Entomol. 5, 59 (2006)

    Google Scholar 

  33. Srinivasarao, M.: Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935 (1999)

    CAS  Google Scholar 

  34. Galusha, J.W., Richey, L.R., Gardner, J.S., Cha, J.N., Bartl, M.H.: Discovery of a diamond-based photonic crystal structure in beetle scales. Phys. Rev. E 77, 050904 (2008)

    Google Scholar 

  35. Galusha, J.W., Richey, L.R., Jorgensen, M.R., Gardner, J.S., Bartl, M.H.: Study of natural photonic crystals in beetle scales and their conversion into inorganic structures via a sol-gel bio-templating route. J. Mater. Chem. 20, 1277 (2010)

    CAS  Google Scholar 

  36. Jorgensen, M.R., Bartl, M.H.: Biotemplating routes to three-dimensional photonic crystals. J. Mater. Chem. 21, 10583 (2011)

    Google Scholar 

  37. Galusha, J.W., Jorgensen, M.R., Bartl, M.H.: Diamond-structured titania photonic bandgap crystals from biological templates. Adv. Mater. 22, 107 (2010)

    CAS  Google Scholar 

  38. Martin-Palma, R.J., Pantano, C.G., Lakhtakia, A.: Replication of fly eyes by the conformal-evaporated-film-by-rotation. Nanotechnology 19, 5 (2008)

    Google Scholar 

  39. Martín-Palma, R.J., Pantano, C.G., Lakhtakia, A.: Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics. Appl. Phys. Lett. 93, 083901 (2008)

    Google Scholar 

  40. Huang, J., Wang, X., Wang, Z.L.: Controlled replication of butterfly wings for achieving tunable photonic properties. Nano. Lett. 6, 2325 (2006)

    CAS  Google Scholar 

  41. Gaillot, D.P., Deparis, O., Welch, V., Wagner, B.K., Vigneron, J.P., Summers, C.J.: Composite organic-inorganic butterfly scales: Production of photonic structures with atomic layer deposition. Phys. Rev. E 78, 031922 (2008)

    Google Scholar 

  42. Zhang, W., Zhang, D., Fan, T., Gu, J., Ding, J., Wang, H., Guo, Q., Ogawa, H.: Novel photoanode structure templated from butterfly wing scales. Chem. Mater. 21, 33 (2008)

    CAS  Google Scholar 

  43. Zhang, W., Zhang, D., Fan, T., Ding, J., Gu, J., Guo, Q., Ogawa, H.: Biosynthesis of cathodoluminescent zinc oxide replicas using butterfly (Papilio paris) wing scales as templates. Mater. Sci. Eng. C 29, 92 (2009)

    Google Scholar 

  44. Lopez, C.: Materials aspects of photonic crystals. Adv. Mater. 15, 1679 (2003)

    CAS  Google Scholar 

  45. Tetreault, N., Miguez, H., Ozin, G.A.: Silicon inverse opal - a platform for photonic bandgap research. Adv. Mater. 16, 1471 (2004)

    CAS  Google Scholar 

  46. Chen, J.I.L., von Freymann, G., Choi, S.Y., Kitaev, V., Ozin, G.A.: Amplified photochemistry with slow photons. Adv. Mater. 18, 1915 (2006)

    CAS  Google Scholar 

  47. Halaoui, L.I., Abrams, N.M., Mallouk, T.E.: Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. J. Phys. Chem. B 109, 6334 (2005)

    CAS  Google Scholar 

  48. Mihi, A., Miguez, H.: Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. J. Phys. Chem. B 109, 15968 (2005)

    CAS  Google Scholar 

  49. Busch, K., John, S.: Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 58, 3896 (1998)

    CAS  Google Scholar 

  50. Ho, K.M., Chan, C.T., Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152 (1990)

    CAS  Google Scholar 

  51. Hynninen, A.P., Thijssen, J.H.J., Vermolen, E.C.M., Dijkstra, M., Van Blaaderen, A.: Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6, 202 (2007)

    CAS  Google Scholar 

  52. Maldovan, M., Thomas, E.L.: Diamond-structured photonic crystals. Nat. Mater. 3, 593 (2004)

    CAS  Google Scholar 

  53. Moroz, A.: Metallo-dielectric diamond and zinc-blende photonic crystals. Phys. Rev. B 66, 115109 (2002)

    Google Scholar 

  54. Ngo, T.T., Liddell, C.M., Ghebrebrhan, M., Joannopoulos, J.D.: Tetrastack: Colloidal diamond-inspired structure with omnidirectional photonic band gap for low refractive index contrast. Appl. Phys. Lett. 88, 242920 (2006)

    Google Scholar 

  55. Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295 (1990)

    Google Scholar 

  56. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., van Driel, H.M.: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437 (2000)

    CAS  Google Scholar 

  57. Garcia-Santamaria, F., Xu, M.J., Lousse, V., Fan, S.H., Braun, P.V., Lewis, J.A.: A germanium inverse woodpile structure with a large photonic band gap. Adv. Mater. 19, 1567 (2007)

    CAS  Google Scholar 

  58. Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., Sigalas, M.M., Zubrzycki, W., Kurtz, S.R., Bur, J.: A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251 (1998)

    CAS  Google Scholar 

  59. Noda, S., Tomoda, K., Yamamoto, N., Chutinan, A.: Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604 (2000)

    CAS  Google Scholar 

  60. Maldovan, M., Thomas, E.L., Carter, C.W.: Layer-by-layer diamond-like woodpile structure with a large photonic band gap. Appl. Phys. Lett. 84, 362 (2004)

    CAS  Google Scholar 

  61. Qi, M.H., Lidorikis, E., Rakich, P.T., Johnson, S.G., Joannopoulos, J.D., Ippen, E.P., Smith, H.I.: A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538 (2004)

    CAS  Google Scholar 

  62. Vlasov, Y.A., Bo, X.Z., Sturm, J.C., Norris, D.J.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289 (2001)

    CAS  Google Scholar 

  63. Wong, S., Deubel, M., Perez-Willard, F., John, S., Ozin, G.A., Wegener, M., von Freymann, G.: Direct laser writing of three-dimensional photonic crystals with complete a photonic bandgap in chalcogenide glasses. Adv. Mater. 18, 265 (2006)

    CAS  Google Scholar 

  64. Hermatschweiler, M., Ledermann, A., Ozin, G.A., Wegener, M.: vonFreymann, G.: Fabrication of silicon inverse woodpile photonic crystals. Adv. Mater. 17, 2273 (2007)

    CAS  Google Scholar 

  65. Sun, H.-B., Matsuo, S., Misawa, H.: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74, 786 (1999)

    CAS  Google Scholar 

  66. Deubel, M., von Freymann, G., Wegener, M., Pereira, S., Busch, K., Soukoulis, C.M.: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444 (2004)

    CAS  Google Scholar 

  67. Gratson, G.M., Xu, M., Lewis, J.A.: Microperiodic structures: Direct writing of three-dimensional webs. Nature 428, 386 (2004)

    CAS  Google Scholar 

  68. Lewis, J.A.: Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193 (2006)

    CAS  Google Scholar 

  69. Lewis, J.A., Braun, P.V.: Direct-write assembly of three-dimensional photonic crystals: Conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18, 461 (2006)

    Google Scholar 

  70. Tétreault, N., von Freymann, G., Deubel, M., Hermatschweiler, M., Pérez-Willard, F., John, S., Wegener, M., Ozin, G.A.: New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates. Adv. Mater. 18, 457 (2006)

    Google Scholar 

  71. Jiang, P., Bertone, J.F., Hwang, K.S., Colvin, V.L.: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132 (1999)

    CAS  Google Scholar 

  72. Norris, D.J., Arlinghaus, E.G., Meng, L., Heiny, R., Scriven, L.E.: Opaline photonic crystals: How does self-assembly work? Adv. Mater. 16, 1393 (2004)

    CAS  Google Scholar 

  73. Shimmin, R.G., DiMauro, A.J., Braun, P.V.: Slow vertical deposition of colloidal crystals: A Langmuir-Blodgett process? Langmuir 22, 6507 (2006)

    CAS  Google Scholar 

  74. Subramania, G., Lee, Y.J., Brener, I., Luk, T.S., Clem, P.G.: Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal. Opt. Express 15, 13049 (2007)

    CAS  Google Scholar 

  75. Subramania, G., Lee, Y.-J., Fischer, A.J., Koleske, D.D.: Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths. Adv. Mater. 22, 487 (2010)

    CAS  Google Scholar 

  76. Urbas, A.M., Maldovan, M., DeRege, P., Thomas, E.L.: Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850 (2002)

    CAS  Google Scholar 

  77. Manoharan, V.N., Imhof, A., Thorne, J.D., Pine, D.J.: Photonic crystals from emulsion templates. Adv. Mater. 13, 447 (2001)

    CAS  Google Scholar 

  78. Subramania, G., Constant, K., Biswas, R., Sigalas, M.M., Ho, K.-M.: Inverse face-centered cubic thin film photonic crystals. Adv. Mater. 13, 443 (2001)

    CAS  Google Scholar 

  79. Subramanian, G., Manoharan, V.N., Thorne, J.D., Pine, D.J.: Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials. Adv. Mater. 11, 1261 (1999)

    CAS  Google Scholar 

  80. Holland, B.T., Blanford, C.F., Do, T., Stein, A.: Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11, 795 (1999)

    CAS  Google Scholar 

  81. Wijnhoven, J., Bechger, L., Vos, W.L.: Fabrication and characterization of large macroporous photonic crystals in titania. Chem, Mater. 13, 4486 (2001)

    Google Scholar 

  82. Kim, H., Lee, H.-B.-R., Maen, W.-J.: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563 (2009)

    CAS  Google Scholar 

  83. King, J.S., Gaillot, D.P., Graugnard, E., Summers, C.J.: Conformally back-filled, non-close-packed inverse-opal photonic crystals. Adv. Mater. 18, 1063 (2006)

    CAS  Google Scholar 

  84. King, J.S., Graugnard, E., Roche, O.M., Sharp, D.N., Scrimgeour, J., Denning, R.G., Turberfield, A.J., Summers, C.J.: Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition. Adv. Mater. 18, 1561 (2006)

    CAS  Google Scholar 

  85. King, J.S., Graugnard, E., Summers, C.J.: TiO2 inverse opals fabricated using low-temperature atomic layer deposition. Adv. Mater. 17, 1010 (2005)

    CAS  Google Scholar 

  86. Garcia-Santamaria, F., Miyazaki, H.T., Urquia, A., Ibisate, M., Belmonte, M., Shinya, N., Meseguer, F., Lopez, C.: Nanorobotic manipulation of microspheres for on-chip diamond architectures. Adv. Mater. 14, 1144 (2002)

    CAS  Google Scholar 

  87. Vigneron, J.P., Colomer, J.F., Rassart, M., Ingram, A.L., Lousse, V.: Structural origin of the colored reflections from the black-billed magpie feathers. Phys. Rev. E 73, 021914 (1993)

    Google Scholar 

  88. Prum, R.O., Dufresne, E.R., Quinn, T., Waters, K.: Development of colour-producing beta-keratin nanostructures in avian feather barbs. J. R. Soc. Interface 6, S253 (2009)

    CAS  Google Scholar 

  89. Galusha, J.W., Richey, L.R., Bartl, M.H.: High-resolution three-dimensional reconstruction of photonic crystal structure found in beetle scales. IEEE LEOS Summer Conference, Adv. Biophotonics 83 (2008)

    Google Scholar 

  90. Ghiradella, H., Aneshansley, D., Eisner, T., Silberglied, R.E., Hinton, H.E.: Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales. Science 178, 1214 (1972)

    CAS  Google Scholar 

  91. Parker, A.R.: The diversity and implications of animal structural colours. J. Exp. Biol. 201, 2343 (1998)

    CAS  Google Scholar 

  92. Vigneron, J.P., Colomer, J.F., Vigneron, N., Lousse, V.: Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera). Phys. Rev. E 72, 904 (2005)

    Google Scholar 

  93. Ha, Y.H., Vaia, R.A., Lynn, W.F., Costantino, J.P., Shin, J., Smith, A.B., Matsudaira, P.T., Thomas, E.L.: Three-dimensional network photonic crystals via cyclic size reduction/infiltration of sea urchin exoskeleton. Adv. Mater. 16, 1091 (2004)

    CAS  Google Scholar 

  94. Parker, A.R., McPhedran, R.C., McKenzie, D.R., Botten, L.C., Nicorovici, N.A.P.: Photonic engineering – Aphrodite's iridescence. Nature 409, 36 (2001)

    CAS  Google Scholar 

  95. Li, Y., Lu, Z., Yin, H., Yu, X., Liu, X., Zi, J.: Structural origin of the brown color of barbules in male peacock tail feathers. Phys. Rev. E 72, 010902 (2000)

    Google Scholar 

  96. Kertesz, K., Molnar, G., Vertesy, Z., Koos, A.A., Horvath, Z.E., Mark, G.I., Tapaszto, L., Balint, Z., Tamaska, I., Deparis, O., Vigneron, J.P., Biro, L.P.: Photonic band gap materials in butterfly scales: A possible source of "blueprints". Mater. Sci. Eng. B 149, 259 (2008)

    CAS  Google Scholar 

  97. Kinoshita, S., Yoshioka, S., Miyazaki, J.: Physics of structural colors. Rep. Prog. Phys. 71, 76401 (2008)

    Google Scholar 

  98. Prum, R.O., Quinn, T., Torres, R.H.: Anatomically diverse butterfly scales all produce structural colours by coherent scattering. J. Exp. Biol. 209, 748 (2006)

    Google Scholar 

  99. Schultz, T.D., Rankin, M.A.: Developmental changes in the interference reflectors and colorations of tiger beetles (Cicindela). J. Exp. Biol. 117, 111 (1985)

    Google Scholar 

  100. Michielsen, K., Stavenga, D.G.: Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. J. R. Soc. Interface 5, 85 (2008)

    CAS  Google Scholar 

  101. Galusha, J.W., Carter, K., Bartl, M.H.: 3-D photonic band structure engineering in self-assembled photonic crystals. Mater. Res. Soc. Symp. Proc. 988, QQ05-08 (2006)

    Google Scholar 

  102. Shawkey, M.D., Saranathan, V., Palsdottir, H., Crum, J., Ellisman, M.H., Auer, M., Prum, R.O.: Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure. J. R. Soc. Interface 6, S213 (2009)

    Google Scholar 

  103. Wilts, B.D., Leertouwer, H.L., Stavenga, D.G.: Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. J. R. Soc. Interface 6, S185 (2009)

    Google Scholar 

  104. Vukusic, P., Stavenga, D.G.: Physical methods for investigating structural colours in biological systems. J. R. Soc. Interface 6, S133 (2009)

    Google Scholar 

  105. Abramoff, M.D., Magelhaes, P.J., Ram, S.J.: Image Processing with ImageJ. Biophotonics Int. 11, 36 (2004)

    Google Scholar 

  106. Thevenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27 (1998)

    CAS  Google Scholar 

  107. Weinstein, D.M., Parker, S.G., Simpson, J., Zimmerman, K., Jones, G.: In: Hansen, C.D., Johnson, C.R. (eds) The Visualization Handbook, pp. 615. Elsevier, Burlington (2005)

    Google Scholar 

  108. Ghiradella, H.T., Butler, M.W.: Many variations on a few themes: a broader look at development of iridescent scales (and feathers). J. R. Soc. Interface 6, S243 (2009)

    Google Scholar 

  109. Poladian, L., Wickham, S., Lee, K., Large, M.C.J.: Iridescence from photonic crystals and its suppression in butterfly scales. J. R. Soc. Interface 6, S233 (2009)

    Google Scholar 

  110. Biro, L.P.: Photonic nanoarchitectures of biologic origin in butterflies and beetles. Mater. Sci. Eng. B (2009). doi:10.1016/j.mseb.2009.10.027

  111. Potyrailo, R.A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J.R., Olson, E.: Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photon 1, 123 (2007)

    CAS  Google Scholar 

  112. Galusha, J.W., Jorgensen, M.R., Richey, L.R., Gardner, J.S., Bartl, M.H.: Oxide-based photonic crystals from biological templates. Proc. SPIE 7401, 74010G (2009)

    Google Scholar 

  113. Johnson, S.G., Joannopoulos, J.D.: Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap. Appl. Phys. Lett. 77, 3490 (2000)

    CAS  Google Scholar 

  114. Huang, J., Wang, X., Wang, Z.L.: Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes. Nanotechnol. 19, 025602 (2008)

    Google Scholar 

  115. Knez, M., Kadri, A., Wege, C., Gösele, U., Jeske, H., Nielsch, K.: Atomic layer deposition on biological macromolecules: Metal oxide coating of tobacco mosaic virus and ferritin. Nano Lett. 6, 1172 (2006)

    CAS  Google Scholar 

  116. Lakhtakia, A., Martin-Palma, R.J., Motyka, M.A., Pantano, C.G.: Fabrication of free-standing replicas of fragile, laminar, chitinous biotemplates. Bioinsp. Biomim. 4, 034001 (2009)

    Google Scholar 

  117. Lakhtakia, A., Martin-Palma, R.J., Pantano, C.G.: Towards replication of the exoskeleton of Lamprocyphus augustus for photonic applications. Proc. SPIE 7401, 74010H (2009)

    Google Scholar 

  118. Brinker, D.J., Scherrer, G.W.: Sol − Gel Science, The Physics and Chemistry of Sol − Gel Processing. Academic, San Diego (1990)

    Google Scholar 

  119. Zhu, S., Zhang, D., Chen, Z., Gu, J., Li, W., Jiang, H., Zhou, G.: A simple and effective approach towards biomimetic replication of photonic structures from butterfly wings. Nanotechnol. 20, 315303 (2009)

    Google Scholar 

  120. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F., Stucky, G.D.: Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380 (1998)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Bartl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bartl, M.H., Galusha, J.W., Jorgensen, M.R. (2012). Oxide-Based Photonic Crystals from Biological Templates. In: Wu, J., Cao, J., Han, WQ., Janotti, A., Kim, HC. (eds) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9931-3_9

Download citation

Publish with us

Policies and ethics