Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantification of Diabetic Retinopathy using Neural Networks and Sensitivity Analysis

  • Conference paper
Artificial Neural Networks in Medicine and Biology

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 254 Accesses

Abstract

The design of neural network classifiers for the identification of diabetic retinopathy is discussed. Red-free digitised fundal images are tiled, and a neural network is trained to distinguish exudates from drusen (similar appearing lesions). By quantifying the degree of retinopathy, the approach can be used to screen diabetic patients for referral. A novel form of hierarchical feature selection using sensitivity analysis is presented. The resulting neural network is compact, and achieves 91% sensitivity and specificity on a test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Williams, R. Diabetes mellitus. In: Stevens. A., Raftery, J. (eds). Health Care Needs Assessment. Oxford University Press, Oxford, 1994, pp. 31–57.

    Google Scholar 

  2. Singer, D.E., Nathan, D.M., Fogel, H.A. Schachat, A.P. Screening for diabetic retinopathy. Ann. Intern. Med. 1992; 116: 660–671.

    Google Scholar 

  3. R.P. Phillips, P.G. Ross, M. Tyska, P.F. Sharp and J.V. Forrester. Detection and quantification of hyperfluourescent leakage by computer analysis of fundus fluorescein angiograms. Graefe’s Arch Clin Exp Ophthalmol 1991; 229: 329–335.

    Article  Google Scholar 

  4. T. Spencer, J.A. Olson, K.C. McHardy, P.F. Sharp and J.V. Forrester. An Image-Processing Strategy for the Segmentation and Quantification of Microaneurysms in Fluorescein Angiograms of the Ocular Fundus. Computers and Biomedical Research 1996; 29:284–302.

    Article  Google Scholar 

  5. R.P. Phillips, J. Forester and P. Sharp. Automated detection and quantification of retinal exudates. Graefe’s Arch Ophthalmol 1993; 231: 90–94.

    Article  Google Scholar 

  6. M.H. Goldbaum, N.P. Katz, M.R. Nelson, L.R. Haff. The discrimination of Similarly Colored Objects in Computer Images of the Ocular Fundus. Investigative Ophthalmology and Visual Science 1990; 31(4): 617–623.

    Google Scholar 

  7. Gardner, G.G., Keating, D. Williamson, T.H. and Elliot, A.T. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J. Ophthalmol. 1996; 80: 940–944.

    Article  Google Scholar 

  8. Hunter, A. Application of Neural Networks and Sensitivity Analysis to improved prediction of Trauma Survival. Computer Methods and Algorithms in Biomedicine (in press).

    Google Scholar 

  9. T.D. Gedeon. Data Mining of Inputs: Analysing Magnitude and Functional Measures. Int. Journal of Neural Systems 1997; 8(2): 209–218.

    Article  MathSciNet  Google Scholar 

  10. J.M. Zurada, A. Malinowski and I. Cloete, Sensitivity Analysis for Minimization of Input Data Dimension for Feedforward Neural Network, IEEE International Symposium on Circuits and Systems, London, May 30-June 3, 1994.

    Google Scholar 

  11. A. Jain and D. Zongker Feature Selection: Evaluation, Application and Small Sample Performance. IEEE Trans. Pattern Analysis and Machine Intelligence 1997; 19(2).

    Google Scholar 

  12. Weigend, A.S., Rumelhart, D.E. and Huberman, B.A. Generalization by weight-elimination with application to forecasting. In: Lippmann, R.P., Moody, J.E. and Touretsky, D.S. (eds). Advances in Neural Information Processing Systems 1991; 3: 875–882. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  13. M.H. Zweig and G. Campbell. Receiver-Operating Characteristic (ROC) Plots: A Fundamental Evaluation Tool in Clinical Medicine. Clin. Chem 1993; 39(4): 561–577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this paper

Cite this paper

Hunter, A., Lowell, J., Owens, J., Kennedy, L., Steele, D. (2000). Quantification of Diabetic Retinopathy using Neural Networks and Sensitivity Analysis. In: Malmgren, H., Borga, M., Niklasson, L. (eds) Artificial Neural Networks in Medicine and Biology. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0513-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0513-8_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-289-1

  • Online ISBN: 978-1-4471-0513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics