Abstract
The multi-covering radii of a code are recent generalizations of the covering radius of a code. In this paper upper bounds are found for the multicovering radii of first order Reed-Muller codes. They are exact in some cases. These bounds are then used to prove the existence of secure families of keystreams against a general class of cryptanalytic attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Balcázar, J. Díaz, and J. Gabarró, “Structural Complexity I,” Springer-Verlag, Berlin, 1988.
G.D. Cohen, M.G. Karpovsky, H.F. Mattson Jr., and J.R. Schatz, Covering radius — survey and recent results, IEEE Trans. Info. Theory IT -31 (1985), 328–343.
G. Cohen, I. Honkala, S. Litsyn and A. Lobstein “Covering Codes,” Elsevier, Amsterdam, 1997.
G. Cohen and S. Litsyn, On the covering radius of Reed-Muller codes Discrete Mathematics, 106–107 (1992), 147–155.
G.D. Cohen, S.N. Litsyn, A.C. Lobstein, and H.F. Mattson Jr.. “Covering Radius 1985–1994,” Dept. Informatique, Ecole Nationale Supérieure des Télécommunications, Technical Report 94 D 025, 1994.
T. Helleseth, T. Klove, and J. Mykkeltveit, On the covering radius of binary codes, IEEE Trans. Info. Theory IT-24 (1978), 627–628.
A. Klapper, The Multicovering radii of codes, IEEE Trans. Info. Theory 43 (1997), 1372–1377.
. A. Klapper, On the existence of secure keystream generators, to appear, J. Cryptology.
F.J. MacWilliams and N.J.A. Sloane, “The Theory of Error Correcting Codes,” North-Holland, Amsterdam, 1977.
O. Rothaus, On `bent’ functions, J. Combin. Thy., Se. A, 20 (1976) 300–305.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag London
About this paper
Cite this paper
Honkala, I., Klapper, A. (1999). Multicovering Radii of Reed-Muller Codes and the Existence of Secure Stream Ciphers (Extended Abstract). In: Ding, C., Helleseth, T., Niederreiter, H. (eds) Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0551-0_18
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0551-0_18
Publisher Name: Springer, London
Print ISBN: 978-1-85233-196-2
Online ISBN: 978-1-4471-0551-0
eBook Packages: Springer Book Archive