Abstract
We have recently given a simple sufficient condition for a class of ergodic maps with some symmetric properties to produce a sequence of independent and identically distributed (i.i.d.) binary random variables. This condition is shown to consist of two simple symmetric properties: the equidistributivity property (or briefly EDP) and constant summation property (or briefly CSP).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
M. Kac, Statistical Independence in Probability Analysis and Number Theory, The Mathematical Association of America, 1959.
P. Billingsley, Probability and Measure, John Wiley & Sons, 1995.
M. K. Simon, J. K. Omura, R. A. Scholtz, and B.K. Levitt, Spread Spectrum Communications Handbook, McGraw-Hi11,1994.
J. L. Massey, “An Introduction to Contemporary Cryptology,” Proc. IEEE, 76-5, pp. 533–549, May 1988.
D. V. Sarwate and M. B. Pursley, “Crosscorrelation Properties of Pseudorandom and Related Sequences,” Proc. IEEE, 68-3, pp. 593–619, 1980.
T. Kohda and A. Tsuneda, “Statistics of Chaotic Binary Sequences”, IEEE Trans. Information Theory, 43-1 pp. 104–112, Jan. 1997.
T. Kohda and A. Tsuneda, “Pseudonoise Sequences by Chaotic Nonlinear Maps and Their Correlation Properties,” IEICE Trans. E76-B-8, pp. 855–862, 1993.
T. Kohda and A. Tsuneda, “Explicit Evaluations of Correlation Functions of Chebyshev Binary and Bit Sequences Based on Perron-Frobenius Operator,” IEICE Trans. E77-A-11, pp. 1794–1800, 1994.
A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Springer-Verlag, 1994.
S.L. Ulam and J. von Neumann, “On combination of stochastic and deterministic processes”, Bull. Math. Soc., 53 p.1120, 1947.
R.L. Adler and T.J. Rivlin, “Ergodic and mixing properties of Chebyshev polynomials,” Proc. Amer.Math.Soc.,15, pp. 794–796,1964.
T.J. Rivlin, Chebyshev polynomials- From Approximation Theory to Algebra and Number Theory, A Wiley-Interscience Publication, (1990).
S. Grossmann and S. Thomae, “Invariant distributions and stationary correlation functions of one-dimensional discrete processes,” Z. Naturforsch. vol. 32a, pp. 1353–1363, 1977.
T. Kohda and A. Tsuneda “Design of sequences of p-ary random variables”, Proc. of 1997 IEEE Int. Sympo. on Information Theory, p.76, 1997
T. Kohda and A. Tsuneda “Chaotic Bit Sequences for Stream Cipher Cryptography and Their Correlation Functions”Proc. SPIE’s Photonics East ‘85 Sympo., (Chaotic Circuit for Communication), SPIE 2612 pp. 86–97, 1995.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag London
About this paper
Cite this paper
Kohda, T. (1999). Sequences of I.I.D. Binary Random Variables Using Chaotic Dynamics. In: Ding, C., Helleseth, T., Niederreiter, H. (eds) Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0551-0_22
Download citation
DOI: https://doi.org/10.1007/978-1-4471-0551-0_22
Publisher Name: Springer, London
Print ISBN: 978-1-85233-196-2
Online ISBN: 978-1-4471-0551-0
eBook Packages: Springer Book Archive