Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sequences of I.I.D. Binary Random Variables Using Chaotic Dynamics

  • Conference paper
Sequences and their Applications

Part of the book series: Discrete Mathematics and Theoretical Computer Science ((DISCMATH))

  • 377 Accesses

Abstract

We have recently given a simple sufficient condition for a class of ergodic maps with some symmetric properties to produce a sequence of independent and identically distributed (i.i.d.) binary random variables. This condition is shown to consist of two simple symmetric properties: the equidistributivity property (or briefly EDP) and constant summation property (or briefly CSP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Kac, Statistical Independence in Probability Analysis and Number Theory, The Mathematical Association of America, 1959.

    MATH  Google Scholar 

  2. P. Billingsley, Probability and Measure, John Wiley & Sons, 1995.

    MATH  Google Scholar 

  3. M. K. Simon, J. K. Omura, R. A. Scholtz, and B.K. Levitt, Spread Spectrum Communications Handbook, McGraw-Hi11,1994.

    Google Scholar 

  4. J. L. Massey, “An Introduction to Contemporary Cryptology,” Proc. IEEE, 76-5, pp. 533–549, May 1988.

    Article  Google Scholar 

  5. D. V. Sarwate and M. B. Pursley, “Crosscorrelation Properties of Pseudorandom and Related Sequences,” Proc. IEEE, 68-3, pp. 593–619, 1980.

    Article  Google Scholar 

  6. T. Kohda and A. Tsuneda, “Statistics of Chaotic Binary Sequences”, IEEE Trans. Information Theory, 43-1 pp. 104–112, Jan. 1997.

    Article  MathSciNet  Google Scholar 

  7. T. Kohda and A. Tsuneda, “Pseudonoise Sequences by Chaotic Nonlinear Maps and Their Correlation Properties,” IEICE Trans. E76-B-8, pp. 855–862, 1993.

    Google Scholar 

  8. T. Kohda and A. Tsuneda, “Explicit Evaluations of Correlation Functions of Chebyshev Binary and Bit Sequences Based on Perron-Frobenius Operator,” IEICE Trans. E77-A-11, pp. 1794–1800, 1994.

    Google Scholar 

  9. A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Springer-Verlag, 1994.

    Google Scholar 

  10. S.L. Ulam and J. von Neumann, “On combination of stochastic and deterministic processes”, Bull. Math. Soc., 53 p.1120, 1947.

    Google Scholar 

  11. R.L. Adler and T.J. Rivlin, “Ergodic and mixing properties of Chebyshev polynomials,” Proc. Amer.Math.Soc.,15, pp. 794–796,1964.

    Article  MathSciNet  MATH  Google Scholar 

  12. T.J. Rivlin, Chebyshev polynomials- From Approximation Theory to Algebra and Number Theory, A Wiley-Interscience Publication, (1990).

    Google Scholar 

  13. S. Grossmann and S. Thomae, “Invariant distributions and stationary correlation functions of one-dimensional discrete processes,” Z. Naturforsch. vol. 32a, pp. 1353–1363, 1977.

    MathSciNet  Google Scholar 

  14. T. Kohda and A. Tsuneda “Design of sequences of p-ary random variables”, Proc. of 1997 IEEE Int. Sympo. on Information Theory, p.76, 1997

    Google Scholar 

  15. T. Kohda and A. Tsuneda “Chaotic Bit Sequences for Stream Cipher Cryptography and Their Correlation Functions”Proc. SPIE’s Photonics East ‘85 Sympo., (Chaotic Circuit for Communication), SPIE 2612 pp. 86–97, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London

About this paper

Cite this paper

Kohda, T. (1999). Sequences of I.I.D. Binary Random Variables Using Chaotic Dynamics. In: Ding, C., Helleseth, T., Niederreiter, H. (eds) Sequences and their Applications. Discrete Mathematics and Theoretical Computer Science. Springer, London. https://doi.org/10.1007/978-1-4471-0551-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0551-0_22

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-196-2

  • Online ISBN: 978-1-4471-0551-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics