Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Vector Quantization and Minimum Description Length

  • Conference paper
International Conference on Advances in Pattern Recognition

Abstract

In this paper we address the problem of finding the optimal number of reference vectors in vector quantization from the point of view of the Minimum Description Length (MDL) principle. We formulate the VQ in terms of the MDL principle, and then derive depending on the coding procedure different instantiations of the algorithm. Moreover, we develop an efficient algorithm (similar to EM-type algorithms) for optimizing the MDL criterion. In addition we can use the MDL principle to increase the robustness of the training algorithm. In order to visualize the behavior of the algorithm, we illustrate our approach on 2D clustering problems and present applications on image coding. Finally we outline various ways to extend the algorithm.

This work was supported by a grant from the Austrian National Fonds zur Förderung der wissenschaftlichen Forschung (No. S7002MAT). A. L. also acknowledges the support from the Ministry of Science and Technology of Republic of Slovenia (Projects J2-8829 and J2-0414).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. J.R. Statist. Soc. B, 39:1–38, 1977.

    MathSciNet  MATH  Google Scholar 

  2. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

    MATH  Google Scholar 

  3. B. Fritzke. Some competitive learning methods (draft). Technical report, Inst, for Neural Computation, Ruhr-University Bochum, 1997.

    Google Scholar 

  4. G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length and Helmholtz free energy. In J. D. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Proc. Systems, volume 6, pages 3–10. Morgan Kaufmann, 1994.

    Google Scholar 

  5. G. E. Hinton and R. S. Zemel. Minimizing description length in an unsupervised neural network (submitted). Neural Networks, 1997.

    Google Scholar 

  6. S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1–43, 1997.

    Article  MATH  Google Scholar 

  7. T. Kohonen. Self-Organization and Associative Memory. Berlin: Springer-Verlag, 1989.

    Google Scholar 

  8. Aleš Leonardis and Horst Bischof. An efficient MDL-Based construction of RBF networks. Neural Networks (in press), 1998.

    Google Scholar 

  9. M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. Springer, 2nd edition, 1997.

    MATH  Google Scholar 

  10. J. Rissanen. Stochastic Complexity in Statistical Inquiry, volume 15 of Series in Computer Science. World Scientific, 1989.

    Google Scholar 

  11. S. Roberts. Parametric and non-parametric unsupervised cluster analysis. Pattern Recognition, 30(2):261–272, 1997.

    Article  Google Scholar 

  12. L. Xu. How many clusters?: A YING-YANG Machine based theory for a classical open problem in pattern recognition. In Proc. of 1996 IEEE Int. Conf. on Neural Networks, volume 3, pages 1546–1551, Washington, DC, June 2–6, 1996. IEEE Computer Society.

    Google Scholar 

  13. R. S. Zemel and G.E Hinton. Learning population codes by minimum description length. Neural Computation, 7(3):549–564, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Bischof, H., Leonardis, A. (1999). Vector Quantization and Minimum Description Length. In: Singh, S. (eds) International Conference on Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-0833-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0833-7_36

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1214-3

  • Online ISBN: 978-1-4471-0833-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics