Abstract
Front-Loading in product engineering is the art of shifting important decisions about process parameters into the very early design phases. These decisions will have to cover parameters of the product as well as its production. Front-Loading requires the integration of different engineering disciplines like product, process and manufacturing design and their dependencies. These disciplines adopt different modeling approaches and incompatible tools, which increases the effort for Front-Loading. This paper presents an approach for interoperability between models coming from different disciplines in order to facilitate integrated engineering during the first design phases by integrating product and process models and evaluate these. In addition, a contextual modeling approach for reducing model complexity to different stakeholder is introduced. The entire work is explained along an industrial use case in aircraft engineering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Thomke, S.; Fujimoto, T.: The Effect of "Front-Loading" Problem-Solving on Product Development Performance. In: Journal of Product Innovation Management, 17 (2003) 2, Pages 128 – 142, published online: 30 Sep 2003
Verganti, R.: Leveraging on systemic learning to manage the early phases of product innovation projects in: R&D Management Volume 27 Issue 4, Pages 377 – 392 Published Online: 17 Dec 2002, Blackwell Publishing Ltd
ATA Chapters: http://www.newportaero.com/home/ATA_CHAPTER
Lillehagen, F.; Krogstie, J.: Active Knowledge Models and Enterprise Knowledge Management. In: Kosanke, K.; Jochem, R.; Nell, J. G.; Ortiz Bas, A. (Hrsg.): Enterprise Inter- and Intra-Organizational Integration, Norwell MA 2003, S. 91–100.
Berre, A. J.; Elvesaeter, N.; Figay, N.; Gugliemina, C.; Johnsen, S. G.; Karlsen, D.; Knothe, T.; Lippe, S.: The ATHENA Interoperability Framework. In: Goncalves, R. J.; Müller, J. P.; Mertins, K.; Zelm, M.: Enterprise Interoperability II. New Challenges and Approaches, London 2007, p. 569–580.
ATHENA-IP Project: Deliverable A1.4.1. Framework for the Establishment and Management Methodology, 2006, http://interop-vlab.eu/ei_public_deliverables/athena-deliverables/A1/d-a1-4.1, Date: 10.09.2010.
International Organization for Standardization: Industrial automation systems - ISO 19440:2007 - Enterprise Integration - Constructs for Enterprise Modelling, 2008.
G. Spur, K. Mertins, R. Jochem. Integrated Enterprise Modelling. Fraunhofer IPK. 1996: 300–432
Cardoso, J.: How to Measure the Control-flow Complexity of Web Processes and Workflows, Funchal, Portugal, 2004.
Frappier, M.; Habrias, H.: A Comparison of the Specification Methods. In (Habrias, H.; Frappier, M. Hrsg.): Software specification methods. ISTE, London, 2006; S. 353–363.
Gruhn, V.; Laue, R.: Complexity metrics for business process models: 9th International Conference on Business (BIS 2006), Klagenfurt, Austria, 2006b.
Halstead, M. H.: Elements of Software Science. Elsevier, Amsterdam, 1987.
Acknowledgement
The proposed concepts were developed in the ISYPROM Project funded by the German Federal Ministry of Education and Research (ID: 02PC105x).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag London Limited
About this paper
Cite this paper
Knothe, T., Jochem, R., Wintrich, N. (2012). Enforcing Front-Loading in Engineering Processes through Product-Process Integration. In: Poler, R., Doumeingts, G., Katzy, B., Chalmeta, R. (eds) Enterprise Interoperability V. Proceedings of the I-ESA Conferences, vol 5. Springer, London. https://doi.org/10.1007/978-1-4471-2819-9_7
Download citation
DOI: https://doi.org/10.1007/978-1-4471-2819-9_7
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-2818-2
Online ISBN: 978-1-4471-2819-9
eBook Packages: EngineeringEngineering (R0)