Abstract
Face recognition using standard 2D images struggles to cope with changes in illumination and pose. 3D face recognition algorithms have been more successful in dealing with these challenges. 3D face shape data is used as an independent cue for face recognition and has also been combined with texture to facilitate multimodal face recognition. Additionally, 3D face models have been used for pose correction and calculation of the facial albedo map, which is invariant to illumination. Finally, 3D face recognition has also achieved significant success towards expression invariance by modeling non-rigid surface deformations, removing facial expressions or by using parts-based face recognition. This chapter gives an overview of 3D face recognition and details both well-established and more recent state-of-the-art 3D face recognition techniques in terms of their implementation and expected performance on benchmark datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This may be referred to as a 3D model, a 3D scan or a 3D image, depending on the mode of capture and how it is stored, as discussed in Chap. 1, Sect 1.1. Be careful to distinguish between a specific face model relating to a single specific 3D capture instance and a general face model, such as Blanz and Vetter’s morphable face model [11], which is generated from many registered 3D face captures.
- 2.
3D points are structured in a rectangular array and since (x,y) values are included, strictly it is not a range image, which contains z-values only.
References
Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: a survey. Pattern Recognit. Lett. 28, 1885–1906 (2007)
Achermann, B., Jiang, X., Bunke, H.: Face recognition using range images. In: Int. Conference on Virtual Systems and MultiMedia, pp. 129–136 (1997)
Adini, Y., Moses, Y., Shimon, U.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 721–732 (1997)
Al-Osaimi, F., Bennamoun, M., Mian, A.: Integration of local and global geometrical cues for 3D face recognition. Pattern Recognit. 41(3), 1030–1040 (2008)
Al-Osaimi, F., Bennamoun, M., Mian, A.: An expression deformation approach to non-rigid 3D face recognition. Int. J. Comput. Vis. 81(3), 302–316 (2009)
Angel, E.: Interactive Computer Graphics. Addison Wesley, Reading (2009)
Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)
Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)
Besl, P., McKay, H.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1063–1074 (2003)
Blanz, V., Scherbaum, K., Seidel, H.: Fitting a morphable model to 3D scans of faces. In: IEEE Int. Conference on Computer Vision, pp. 1–8 (2007)
The Bosphorus 3D face database: http://bosphorus.ee.boun.edu.tr/. Accessed 5th July 2011
Bowyer, K., Chang, K., Flynn, P.: A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Comput. Vis. Image Underst. 101, 1–15 (2006)
Bronstein, A., Bronstein, M., Kimmel, R.: Three-dimensional face recognition. Int. J. Comput. Vis. 64(1), 5–30 (2005)
CASIA-3D FaceV1: http://biometrics.idealtest.org. Accessed 5th July 2011
Chang, K., Bowyer, K., Flynn, P.: Face recognition using 2D and 3D facial data. In: Multimodal User Authentication Workshop, pp. 25–32 (2003)
Chang, K., Bowyer, K., Flynn, P.: An evaluation of multimodal 2D+3D face biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 619–624 (2005)
Chang, K., Bowyer, K., Flynn, P.: Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1695–1700 (2006)
Chua, C., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25(1), 63–85 (1997)
Chua, C., Han, F., Ho, Y.: 3D human face recognition using point signatures. In: Proc. IEEE Int. Workshop Analysis and Modeling of Faces and Gestures, pp. 233–238 (2000)
Colombo, A., Cusano, C., Schettini, R.: 3D face detection using curvature analysis. Pattern Recognit. 39(3), 444–455 (2006)
Creusot, C., Pears, N.E., Austin, J.: 3D face landmark labelling. In: Proc. 1st ACM Workshop on 3D Object Retrieval (3DOR’10), pp. 27–32 (2010)
Creusot, C., Pears, N.E., Austin, J.: Automatic keypoint detection on 3D faces using a dictionary of local shapes. In: The First Joint 3DIM/3DPVT Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 16–19 (2011)
Creusot, C.: Automatic landmarking for non-cooperative 3d face recognition. Ph.D. thesis, Department of Computer Science, University of York, UK (2011)
DeCarlo, D., Metaxas, D.: Optical flow constraints on deformable models with applications to face tracking. Int. J. Comput. Vis. 38(2), 99–127 (2000)
D’Erico, J.: Surface Fitting Using Gridfit. MATLAB Central File Exchange (2006)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2001)
Face recognition homepage: http://www.face-rec.org. Accessed 24th August 2011
Faltemier, T.C., Bowyer, K.W., Flynn, P.J.: Using a multi-instance enrollment representation to improve 3D face recognition. In: 1st IEEE Int. Conf. on Biometrics: Theory, Applications, and Systems (BTAS’07) (2007)
Faltemier, T., Bowyer, K., Flynn, P.: A region ensemble for 3-D face recognition. IEEE Trans. Inf. Forensics Secur. 3(1), 62–73 (2008)
Farkas, L.: Anthropometry of the Head and Face. Raven Press, New York (1994)
Fisher, N., Lee, A.: Correlation coefficients for random variables on a unit sphere or hypersphere. Biometrika 73(1), 159–164 (1986)
Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vis. Comput. 21, 1145–1153 (2003)
Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)
Gao, H., Davis, J.W.: Why direct LDA is not equivalent to LDA. Pattern Recognit. 39, 1002–1006 (2006)
Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH (1997)
Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 6(23), 643–660 (2001)
Gokberk, B., Irfanoglua, M., Arakun, L.: 3D shape-based face representation and feature extraction for face recognition. Image Vis. Comput. 24(8), 857–869 (2006)
Gordon, G.: Face recognition based on depth and curvature feature. In: IEEE Computer Society Conference on CVPR, pp. 808–810 (1992)
Gupta, S., Markey, M., Bovik, A.: Anthropometric 3D face recognition. Int. J. Comput. Vis. doi:10.1007/s11263-010-0360-8 (2010)
Heckbert, P., Garland, M.: Survey of polygonal surface simplification algorithms. In: SIGGRAPH, Course Notes: Multiresolution Surface Modeling (1997)
Heseltine, T., Pears, N.E., Austin, J.: Three-dimensional face recognition: an fishersurface approach. In: Proc. Int. Conf. Image Analysis and Recognition, vol. II, pp. 684–691 (2004)
Heseltine, T., Pears, N.E., Austin, J.: Three-dimensional face recognition: an eigensurface approach. In: Proc. IEEE Int. Conf. Image Processing, pp. 1421–1424 (2004)
Heseltine, T., Pears, N.E., Austin, J.: Three dimensional face recognition using combinations of surface feature map subspace components. Image Vis. Comput. 26(3), 382–396 (2008)
Hesher, C., Srivastava, A., Erlebacher, G.: A novel technique for face recognition using range imaging. In: Int. Symposium on Signal Processing and Its Applications, pp. 201–204 (2003)
Horn, B.: Robot Vision. MIT Press, Cambridge (1986). Chap. 16
Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)
Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 674–686 (1999)
Kakadiaris, I., Passalis, G., Theoharis, T., Toderici, G., Konstantinidis, I., Murtuza, N.: Multimodal face recognition: combination of geometry with physiological information. In: Proc. IEEE Int. Conf on Computer Vision and Pattern Recognition, pp. 1022–1029 (2005)
Kakadiaris, I., Passalis, G., Toderici, G., Murtuza, M., Lu, Y., Karampatziakis, N., Theoharis, T.: Three-dimensional face recognition in the presence of facial expressions: an annotated deformable model approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 640–649 (2007)
Kimmel, R., Sethian, J.: Computing geodesic on manifolds. Proc. Natl. Acad. Sci. USA 95, 8431–8435 (1998)
Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)
Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vis. Comput. 10(8), 557–564 (1992)
Lee, J., Milios, E.: Matching range images of human faces. In: Int. Conference on Computer Vision, pp. 722–726 (1990)
Lee, Y., Shim, J.: Curvature-based human face recognition using depth-weighted Hausdorff distance. In: Int. Conference on Image Processing, pp. 1429–1432 (2004)
Lo, T., Siebert, J.P.: Local feature extraction and matching on range images: 2.5D SIFT. Comput. Vis. Image Underst. 113(12), 1235–1250 (2009)
Lu, X., Jain, A.K.: Deformation modeling for robust 3D face matching. In: Proc IEEE Int. Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 1377–1383 (2006)
Lu, X., Jain, A., Colbry, D.: Matching 2.5D scans to 3D models. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 31–43 (2006)
Mandal, C., Qin, H., Vemuri, B.: A novel FEM-based dynamic framework for subdivision surfaces. Comput. Aided Des. 32(8–9), 479–497 (2000)
Maurer, T., Guigonis, D., Maslov, I., Pesenti, B., Tsaregorodtsev, A., West, D., Medioni, G.: Performance of Geometrix ActiveID 3D face recognition engine on the FRGC data. In: IEEE Workshop on Face Recognition Grand Challenge Experiments (2005)
Metaxas, D., Kakadiaris, I.: Elastically adaptive deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1310–1321 (2002)
Mian, A.: http://www.csse.uwa.edu.au/~ajmal/code.html. Accessed on 6th July 2011
Mian, A., Bennamoun, M., Owens, R.: An efficient multimodal 2D–3D hybrid approach to automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1927–1943 (2007)
Mian, A., Bennamoun, M., Owens, R.: Keypoint detection and local feature matching for textured 3D face recognition. Int. J. Comput. Vis. 79(1), 1–12 (2008)
Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. (2010)
Medioni, G., Waupotitsch, R.: Face recognition and modeling in 3D. In: IEEE Int. Workshop Analysis and Modeling of Faces and Gestures, pp. 232–233 (2003)
MeshLab.: Visual computing Lab. ISTI-CNR. http://meshlab.sourceforge.net/. Cited 14 June, 2010
Padia, C., Pears, N.E.: AÂ review and characterization of ICP-based symmetry plane localisation in 3D face data. Technical Report YCS 463, Department of Computer Science, University of York (2011)
Pan, G., Han, S., Wu, Z., Wang, Y.: 3D face recognition using mapped depth images. In: IEEE Workshop on Face Recognition Grand Challenge Experiments (2005)
Passalis, G., Kakadiaris, I.A., Theoharis, T., Toderici, G., Murtuza, N.: Evaluation of the UR3D algorithm using the FRGC v2 data set. In: Proc. IEEE Workshop on Face Recognition Grand Challenge Experiments (2005)
Pears, N.E., Heseltine, T., Romero, M.: From 3D point clouds to pose normalised depth maps. Int. J. Comput. Vis. 89(2), 152–176 (2010). Special Issue on 3D Object Retrieval
Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE CVPR, pp. 947–954 (2005)
Piegl, L., Tiller, W.: The NURBS Book. Monographs in Visual Communication, 2nd edn. (1997)
Portilla, J., Simoncelli, E.: A parametric texture model based on joint statistic of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–71 (2000)
Queirolo, C.Q., Silva, L., Bellon, O.R.P., Segundo, M.P.: 3D face recognition using simulated annealing and the surface interpenetration measure. IEEE Trans. Pattern Anal. Mach. Intell. 32(2), 206–219 (2010)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Int. Conf. on 3D Digital Imaging and Modeling, pp. 145–152 (2001)
Samir, C., Srivastava, A., Daoudi, M.: Three-dimensional face recognition using shapes of facial curves. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1858–1863 (2006)
Savran, A., et al.: In: Bosphorus Database for 3D Face Analysis. Biometrics and Identity Management. Lecture Notes in Computer Science, vol. 5372, pp. 47–56 (2008)
Sethian, J.: A review of the theory, algorithms, and applications of level set method for propagating surfaces. In: Acta Numer., pp. 309–395 (1996)
Silva, L., Bellon, O.R.P., Boyer, K.L.: Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 762–776 (2005)
Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4, 519–524 (1987)
Spira, A., Kimmel, R.: An ecient solution to the eikonal equation on parametric manifolds. Interfaces Free Bound. 6(3), 315–327 (2004)
Swiss Ranger. Mesa Imaging. http://www.mesa-imaging.ch/. Cited 10 June, 2010
Tanaka, H., Ikeda, M., Chiaki, H.: Curvature-based face surface recognition using spherical correlation principal directions for curved object recognition. In: Int. Conference on Automated Face and Gesture Recognition, pp. 372–377 (1998)
Texas 3D face recognition database. http://live.ece.utexas.edu/research/texas3dfr/. Accessed 5th July 2011
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)
Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Xianfang, S., Rosin, P., Martin, R., Langbein, F.: Noise analysis and synthesis for 3D laser depth scanners. Graph. Models 71(2), 34–48 (2009)
Xu, C., Wang, Y., Tan, T., Quan, L.: Automatic 3D face recognition combining global geometric features with local shape variation information. In: Proc. IEEE Int. Conf. Pattern Recognition, pp. 308–313 (2004)
Yan, P., Bowyer, K.W.: A fast algorithm for ICP-based 3D shape biometrics. Comput. Vis. Image Underst. 107(3), 195–202 (2007)
Yang, M., Kriegman, D., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002)
Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: 7th Int. Conf. on Automatic Face and Gesture Recognition (FGR06), pp. 211–216 (2006)
Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data—with application to face recognition. Pattern Recognit. 34(10), 2067–2069 (2001)
Zhang, L., Snavely, N., Curless, B., Seitz, S.: Spacetime faces: high resolution capture for modeling and animation. ACM Trans. Graph. 23(3), 548–558 (2004)
Zhao, W., Chellappa, R., Phillips, P., Rosenfeld, A.: Face recognition: a literature survey. In: ACM Computing Survey, vol. 35, pp. 399–458 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag London
About this chapter
Cite this chapter
Mian, A., Pears, N. (2012). 3D Face Recognition. In: Pears, N., Liu, Y., Bunting, P. (eds) 3D Imaging, Analysis and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-4063-4_8
Download citation
DOI: https://doi.org/10.1007/978-1-4471-4063-4_8
Publisher Name: Springer, London
Print ISBN: 978-1-4471-4062-7
Online ISBN: 978-1-4471-4063-4
eBook Packages: Computer ScienceComputer Science (R0)