Abstract
The amount of information that people share on social networks is constantly increasing. People also comment, annotate, and tag their own content (videos, photos, notes, etc.), as well as the content of others. In many cases, the content is tagged manually. One way to make this time-consuming manual tagging process more efficient is to propagate tags from a small set of tagged images to the larger set of untagged images automatically. In such a scenario, however, a wrong or a spam tag can damage the integrity and reliability of the automated propagation system. Users may make mistakes in tagging, or irrelevant tags and content may be added maliciously for advertisement or self-promotion. Therefore, a certain mechanism insuring the trustworthiness of users or published content is needed. In this chapter, we discuss several image retrieval methods based on tags, various approaches to trust modeling and spam protection in social networks, and trust modeling in geotagging systems. We then consider a specific example of automated geotag propagation system that adopts a user trust model. The tag propagation in images relies on the similarity between image content (famous landmarks) and its context (associated geotags). For each tagged image, similar untagged images are found by the robust graph-based object duplicate detection, and the known tags are propagated accordingly. The user trust value is estimated based on a social feedback from the users of the photo-sharing system, and only tags from trusted users are propagated. This approach demonstrates that a practical tagging system significantly benefits from the intelligent combination of efficient propagation algorithm and a user-centered trust model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
References
Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)
Barnett, E.: 3.4 billion photographs on Google+ in 100 days. http://www.telegraph.co.uk/technology/google/8838196/3.4-billion-photog%raphs-on-Google-in-100-days.html(2011)
Budanitsky, A., Hirst, G.: Evaluating WordNet-based measures of lexical semantic relatedness. Comput. Linguist. 32(1), 13–47 (2006)
Cilibrasi, R.L., Vitanyi, P.M.B.: The Google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)
Fetterly, D., Manasse, M., Najork, M.: Spam, damn spam, and statistics: using statistical analysis to locate spam web pages. In: Proceedings of the ACM WebDB, Paris, pp. 1–6 (2004)
Gammeter, S., Bossard, L., Quack, T., van Gool, L.: I know what you did last summer: object level auto-annotation of holiday snaps. In: Proceedings of the ICCV, Kyoto, pp. 614–621 (2009)
Gyongyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with TrustRank. In: Proceedings of the VLDB, Toronto, pp. 576–587 (2004)
Hays, J., Efros, A.A.: im2gps: Estimating geographic information from a single image. In: Proceedings of the IEEE CVPR, Anchorage, pp. 1–8 (2008)
Heymann, P., Koutrika, G., Garcia-Molina, H.: Fighting spam on social web sites: a survey of approaches and future challenges. IEEE Internet Comput. 11(6), 36–45 (2007)
Hollenstein, L., Purves, R.: Exploring place through user-generated content: using Flickr to describe city cores. J. Spat. Inf. Sci. 1–29 (2010)
International Press Telecommunications Council: IPTC Photo Metadata Standard, IPTC Core 1.1 and IPTC Extension 1.1. Technical report (2009)
Ivanov, I., Vajda, P., Lee, J.S., Ebrahimi, T.: In tags we trust: trust modeling in social tagging of multimedia content. IEEE Signal Proc. Mag. 29(2), 98–107 (2012)
Ivanov, I., Vajda, P., Lee, J.S., Goldmann, L., Ebrahimi, T.: Geotag propagation in social networks based on user trust model. MTAP 56(1), 155–177 (2012)
Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decision Support Syst. 43(2), 618–644 (2007)
Kennedy, L.S., Chang, S.F., Kozintsev, I.V.: To search or to label?: predicting the performance of search-based automatic image classifiers. In: Proceedings of the ACM MIR, Santa Barbara, pp. 249–258 (2006)
Kennedy, L.S., Naaman, M.: Generating diverse and representative image search results for landmarks. In: Proceedings of the WWW, Beijing, pp. 297–306 (2008)
Kessler, S.: Mashable Infographics – Facebook Photos by the Numbers. http://www.mashable.com/2011/02/14/facebook-photo-infographic(2011)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. JACM 46(5), 604–632 (1999)
Koutrika, G., Effendi, F.A., Gyöngyi, Z., Heymann, P., Garcia-Molina, H.: Combating spam in tagging systems: an evaluation. ACM TWEB 2(4), 22:1–22:34 (2008)
Krause, B., Schmitz, C., Hotho, A., G., S.: The anti-social tagger: detecting spam in social bookmarking systems. In: Proceedings of the ACM AIRWeb, Beijing, pp. 61–68 (2008)
Krestel, R., Chen, L.: Using co-occurence of tags and resources to identify spammers. In: Proceedings of the ECML PKDD, Antwerp, pp. 38–46 (2008)
Liu, K., Fang, B., Zhang, Y.: Detecting tag spam in social tagging systems with collaborative knowledge. In: Proceedings of the IEEE FSKD, Tianjin, pp. 427–431 (2009)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Luo, J., Joshi, D., Yu, J., Gallagher, A.: Geotagging in multimedia and computer vision – a survey. MTAP 51(1), 187–211 (2011)
Markines, B., Cattuto, C., Menczer, F.: Social spam detection. In: Proceedings of the ACM AIRWeb, Madrid, pp. 41–48 (2009)
Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr, academic article, to read. In: Proceedings of the ACM HT, Odense, pp. 31–40 (2006)
Marti, S., Garcia-Molina, H.: Taxonomy of trust: Categorizing P2P reputation systems. Comput. Netw. 50(4), 472–484 (2006)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Proceedings of the ECCV, Copenhagen, pp. 128–142 (2002)
Mori, G., Malik, J.: Recognizing objects in adversarial clutter: breaking a visual CAPTCHA. In: Proceedings of the IEEE CVPR, Madison, pp. I–134–I–141 (2003)
Nister, D., Stewenius, H.: Robust scalable recognition with a vocabulary tree. In: Proceedings of the IEEE CVPR, New York, pp. 2161–2168 (2006)
Noll, M.G., Yeung, C.A., Gibbins, N., Meinel, C., Shadbolt, N.: Telling experts from spammers: expertise ranking in folksonomies. In: Proceedings of the ACM SIGIR, Boston, pp. 612–619 (2009)
Parr, B.: Mashable Infographics – Facebook by the Numbers. http://www.mashable.com/2011/10/21/facebook-infographic(2011)
Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from community photo collections. In: Proceedings of the IEEE CIVR, Niagara Falls, pp. 47–56 (2008)
Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach to filtering junk e-mail. Technical report, WS-98-05 (1998)
Technical Standardization Committee on AV & IT Storage Systems and Equipment: Exchangeable image file format for digital still cameras: Exif Version 2.2. Technical report, JEITA CP-3451 (2002)
Thomason, A.: Blog spam: A review. In: Proceedings of the CEAS, Mountain View (2007)
Vajda, P., Goldmann, L., Ebrahimi, T.: Analysis of the limits of graph-based object duplicate detection. In: Proceedings of the Symposium on Multimedia, San Diego, pp. 600–605 (2009)
Vajda, P., Ivanov, I., Goldmann, L., Lee, J.S., Ebrahimi, T.: Robust duplicate detection of 2D and 3D objects. IJMDEM 1(3), 19–40 (2010)
von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI problems for security. In: Proceedings of the Eurocrypt, Warsaw, pp. 294–311 (2003)
von Ahn, L., Maurer, B., Mcmillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-based character recognition via web security measures. Science 321(5895), 1465–1468 (2008)
Whitby, A., Jøsang, A., Indulska, J.: Filtering out unfair ratings in bayesian reputation systems. In: Proceedings of the IEEE AAMAS, New York, pp. 106–117 (2004)
Wikimedia Foundation Inc.: Wikipedia–Flickr. http://en.wikipedia.org/wiki/Flickr(2012)
Wu, C.T., Cheng, K.T., Zhu, Q., Wu, Y.L.: Using visual features for anti-spam filtering. In: Proceedings of the IEEE ICIP, Genoa, vol. 3, pp. III – 509–512 (2005)
Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: collaborative tag suggestions. In: Proceedings of the ACM WWW, Santa Barbara (2006)
Yahoo! Inc.: Flickr – Tags. http://www.flickr.com/help/tags(2011)
Yang, Y., Sun, Y.L., Kay, S., Yang, Q.: Defending online reputation systems against collaborative unfair raters through signal modeling and trust. In: Proceedings of the ACM SAC, Honolulu, pp. 1308–1315 (2009)
Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T., Neven, H.: Tour the World: building a web-scale landmark recognition engine. In: Proceedings of the IEEE CVPR, Miami, pp. 1085–1092 (2009)
Acknowledgements
This work was supported by the Swiss National Foundation for Scientific Research in the framework of NCCR Interactive Multimodal Information Management (IM2), the Swiss National Science Foundation Grant “Multimedia Security” (number 200020-113709), and partially supported by the European Network of Excellence PetaMedia (FP7/2007-2011).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this chapter
Cite this chapter
Ivanov, I., Vajda, P., Lee, JS., Korshunov, P., Ebrahimi, T. (2013). Geotag Propagation with User Trust Modeling. In: Ramzan, N., van Zwol, R., Lee, JS., Clüver, K., Hua, XS. (eds) Social Media Retrieval. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-4471-4555-4_13
Download citation
DOI: https://doi.org/10.1007/978-1-4471-4555-4_13
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-4554-7
Online ISBN: 978-1-4471-4555-4
eBook Packages: Computer ScienceComputer Science (R0)