Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

S-Theta: low steering path-planning algorithm

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXIX (SGAI 2012)

Abstract

The path-planning problem for autonomous mobile robots has been addressed by classical search techniques such as A* or, more recently, Theta*. However, research usually focuses on reducing the length of the path or the processing time. Applying these advances to autonomous robots may result in the obtained “short” routes being less suitable for the robot locomotion subsystem. That is, in some types of exploration robots, the heading changes can be very costly (i.e. consume a lot of battery) and therefore may be beneficial to slightly increase the length of the path and decrease the number of turns (and thus reduce the battery consumption). In this paper we present a path-planning algorithm called S-Theta* that smoothes the turns of the path. This algorithm significantly reduces the heading changes, in both, indoors and outdoors problems as results show, making the algorithm especially suitable for robots whose ability to turn is limited or the associated cost is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. Millington and J. Funge, Artificial Intelligence for Games, 2nd ed. Morgan Kaufmann Publishers, 2009.

    Google Scholar 

  2. D. Ferguson and A. Stentz, “Field D*: An interpolation-based path planner and replanner,” in Proceedings of the International Symposium on Robotics Research (ISRR), October 2005.

    Google Scholar 

  3. A. Nash, K. Daniel, S. Koenig, and A. Felner, “Theta*: Any-angle path planning on grids,” in In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2007, pp. 1177– 1183.

    Google Scholar 

  4. P. M. noz and M. D. R-Moreno, “Improving efficiency in any-angle path-planning algorithms,” in 6th IEEE International Conference on Intelligent Systems IS12, Sofia, Bulgaria, September 2012.

    Google Scholar 

  5. S. Choi, J. Y. Lee, and W. Yu, “Fast any-angle path planning on grid maps with non-collision pruning,” in IEEE International Conference on Robotics and Biomimetics, Tianjin, China, December 2010, pp. 1051–1056.

    Google Scholar 

  6. K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path planning on grids,” Journal of Artificial Intelligence Research, vol. 39, pp. 533–579, 2010.

    MathSciNet  MATH  Google Scholar 

  7. A. Botea, M. Muller, and J. Schaeffer, “Near optimal hierarchical path-finding,” Journal of Game Development, vol. 1, pp. 1–22, 2004.

    Google Scholar 

  8. P. Yap, “Grid-based path-finding,” in Advances in Artificial Intelligence, ser. Lecture Notes in Computer Science, vol. 2338. Springer Berlin / Heidelberg, 2002, pp. 44–55.

    Google Scholar 

  9. G. Ayorkor, A. Stentz, and M. B. Dias, “Continuous-field path planning with constrained path-dependent state variables,” in ICRA 2008 Workshop on Path Planning on Costmaps, May 2008.

    Google Scholar 

  10. J. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems Journal vol. 4, pp. 25–30, 1965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this paper

Cite this paper

Muñoz, P., R-Moreno, M.D. (2012). S-Theta: low steering path-planning algorithm. In: Bramer, M., Petridis, M. (eds) Research and Development in Intelligent Systems XXIX. SGAI 2012. Springer, London. https://doi.org/10.1007/978-1-4471-4739-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4739-8_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4738-1

  • Online ISBN: 978-1-4471-4739-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics