Abstract
This entry discusses an important compromise in feedback design: reconciling the superior performance characteristics of the \(\mathcal{H}_{2}\) optimization criterion, with robustness requirements expressed through induced norms such as \(\mathcal{H}_{\infty }\). The fact that both criteria have frequency-domain characterizations and involve similar state-space machinery motivated many researchers to seek an adequate combination. We review here robust \(\mathcal{H}_{2}\) analysis methods based on convex optimization developed in the 1990s and comment on their implications for controller synthesis.
Similar content being viewed by others
Bibliography
Anderson B, Moore JB (1990) Optimal control: linear quadratic methods. Prentice Hall, Englewood Cliffs
Bernstein DS, Haddad WH (1989) LQG control with an \(\mathcal{H}_{\infty }\) performance bound: a Riccati equation approach. IEEE Trans Autom Control 34(3):293–305
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Doyle J (1978) Guaranteed margins for LQG regulators. IEEE Trans Autom Control 23(4):756–757
Doyle J, Zhou K, Glover K, Bodenheimer B (1994) Mixed \(\mathcal{H}_{2}\) and \(\mathcal{H}_{\infty }\) performance objectives II: optimal control. IEEE Trans Autom Control 39(8):1575–1587
Dullerud GE, Paganini F (2000) A course in robust control theory: a convex approach. Texts in applied mathematics, vol 36. Springer, New York
Feron E (1997) Analysis of robust \(\mathcal{H}_{2}\) performance using multiplier theory. SIAM J Control Optim 35(1):160–177
Khargonekar P, Rotea M (1991) Mixed \(\mathcal{H}_{2}/\mathcal{H}_{\infty }\) control: a convex optimization approach. IEEE Trans Autom Control 36(7):824–837
Oksendal B (1985) Stochastic differential equations. Springer, New York
Paganini F (1999) Convex methods for robust \(\mathcal{H}_{2}\) analysis of continuous time systems. IEEE Trans Autom Control 44(2):239–252
Paganini F, Feron E (1999) LMI methods for robust \(\mathcal{H}_{2}\) analysis: a survey with comparisons. In: El Ghaoui L, Niculescu S (Eds) Recent advances on LMI methods in control. SIAM, Philadelphia
Sánchez-Peña R, Sznaier M (1998) Robust systems theory and applications. Wiley, New York
Scherer C, Gahinet P, Chilali M (1997) Multiobjective output-feedback control via LMI-optimization. IEEE Trans Autom Control 42:896–911
Stoorvogel AA (1993) The robust \(\mathcal{H}_{2}\) control problem: a worst-case design. IEEE Trans Autom Control 38(9):1358–1370
Sznaier M, Rotstein H, Bu J, Sideris A (2000) An exact solution to continuous-time mixed \(\mathcal{H}_{2}/\mathcal{H}_{\infty }\) control problems. IEEE Trans Autom Control 45(11):2095–2101
Sznaier M, Amishima T, Parrilo PA, Tierno J (2002) A convex approach to robust \(\mathcal{H}_{2}\) performance analysis. Automatica 38:957–966
Zhou K, Glover K, Bodenheimer B, Doyle J (1994) Mixed \(\mathcal{H}_{2}\) and \(\mathcal{H}_{\infty }\) performance objectives I: robust performance analysis. IEEE Trans Autom Control 39(8):1564–1574
Zhou K, Doyle J, Glover K (1996) Robust and optimal control. Prentice Hall, Upper Saddle River
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag London
About this entry
Cite this entry
Paganini, F. (2013). Robust ℋ 2 Performance in Feedback Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_164-1
Download citation
DOI: https://doi.org/10.1007/978-1-4471-5102-9_164-1
Received:
Accepted:
Published:
Publisher Name: Springer, London
Online ISBN: 978-1-4471-5102-9
eBook Packages: Living Reference EngineeringReference Module Computer Science and Engineering