Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimal Control and Mechanics

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 581 Accesses

Introduction

There are very natural close connections between mechanics and optimal control as both involve variational problems. This is a huge subject and we just touch on some interesting connections here. A survey and history may be found in Sussman and Willems (1997). Other aspects may be found in Bloch (2003).

Variational Nonholonomic Systems and Optimal Control

Variational nonholonomic problems (i.e., constrained variational problems) are equivalent to optimal control problems under certain regularity conditions. This issue was investigated in Bloch and Crouch (1994), employing the classical results of Rund (1966) and Bliss (1930), which relate classical constrained variational problems to Hamiltonian flows, although not optimal control problems. We outline the simplest relationship and refer to Bloch (2003) for more details.

Let Q be a smooth manifold and TQ its tangent bundle with coordinates \((q^{i},\dot{q}^{i})\). Let \(L : TQ \rightarrow\mathbb{R}\)be a given smooth...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Agrachev AA, Sarychev AV (1996) Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann Inst H Poincaré Anal Non Linéaire 13:635–690

    MATH  MathSciNet  Google Scholar 

  • Baillieul J (1975) Some optimization problems in geometric control theory. Ph.D. thesis, Harvard University

    Google Scholar 

  • Baillieul J (1978) Geometric methods for nonlinear optimal control problems. J Optim Theory Appl 25:519–548

    Article  MATH  MathSciNet  Google Scholar 

  • Bliss G (1930) The problem of lagrange in the calculus of variations. Am J Math 52:673–744

    Article  MATH  MathSciNet  Google Scholar 

  • Bloch AM (2003) (with Baillieul J, Crouch PE, Marsden JE), Nonholonomic mechanics and control. Interdisciplinary applied mathematics. Springer, New York

    Google Scholar 

  • Bloch AM, Crouch PE (1994) Reduction of Euler–Lagrange problems for constrained variational problems and relation with optimal control problems. In: Proceedings of the 33rd IEEE conference on decision and control, Lake Buena Vista. IEEE, pp 2584–2590

    Google Scholar 

  • Bloch AM, Crouch PE (1996) Optimal control and geodesic flows. Syst Control Lett 28(2):65–72

    Article  MATH  MathSciNet  Google Scholar 

  • Bloch AM, Crouch PE, Ratiu TS (1994) Sub-Riemannian optimal control problems. Fields Inst Commun AMS 3:35–48

    MathSciNet  Google Scholar 

  • Bloch AM, Crouch P, Marsden JE, Ratiu TS (2002) The symmetric representation of the rigid body equations and their discretization. Nonlinearity 15:1309–1341

    Article  MATH  MathSciNet  Google Scholar 

  • Bloch AM, Crouch PE, Nordkivst N, Sanyal AK (2011) Embedded geodesic problems and optimal control for matrix Lie groups. J Geom Mech 3:197–223

    Article  MATH  MathSciNet  Google Scholar 

  • Bloch AM, Crouch PE, Nordkivst N (2013) Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. J Geom Mech 5:1–38

    Article  MATH  MathSciNet  Google Scholar 

  • Brockett RW (1973) Lie theory and control systems defined on spheres. SIAM J Appl Math 25(2):213–225

    Article  MATH  MathSciNet  Google Scholar 

  • Brockett RW (1981) Control theory and singular Riemannian geometry. In: Hilton PJ, Young GS (eds) New directions in applied mathematics. Springer, New York, pp 11–27

    Google Scholar 

  • Brockett RW (1983) Nonlinear control theory and differential geometry. In: Proceedings of the international congress of mathematicians, Warsaw, pp 1357–1368

    Google Scholar 

  • Gay-Balmaz F, Ratiu TS (2011) Clebsch optimal control formulation in mechanics. J Geom Mech 3:41–79

    Article  MATH  MathSciNet  Google Scholar 

  • Griffiths PA (1983) Exterior differential systems. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Manakov SV (1976) Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body. Funct Anal Appl 10:328–329

    Article  MathSciNet  Google Scholar 

  • Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry. Texts in applied mathematics, vol 17. Springer, New York. (1st edn. 1994; 2nd edn. 1999)

    Google Scholar 

  • Montgomery R (1993) Gauge theory of the falling cat. Fields Inst Commun 1:193–218

    Google Scholar 

  • Montgomery R (1994) Abnormal minimizers. SIAM J Control Optim 32:1605–1620

    Article  MATH  MathSciNet  Google Scholar 

  • Montgomery R (1995) A survey of singular curves in sub-Riemannian geometry. J Dyn Control Syst 1:49–90

    Article  MATH  Google Scholar 

  • Montgomery R (2002) A tour of sub-Riemannian geometries, their geodesics and applications. Mathematical surveys and monographs, vol 91. American Mathematical Society, Providence

    Google Scholar 

  • Ratiu T (1980) The motion of the free n-dimensional rigid body. Indiana U Math J 29:609–627

    Article  MATH  MathSciNet  Google Scholar 

  • Rund H (1966) The Hamiltonian–Jacobi theory in the calculus of variations. Krieger, New York

    Google Scholar 

  • Strichartz R (1983) Sub-Riemannian geometry. J Diff Geom 24:221–263; see also J Diff Geom 30:595–596 (1989)

    Google Scholar 

  • Strichartz RS (1987) The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations. J Funct Anal 72:320–345

    Article  MATH  MathSciNet  Google Scholar 

  • Sussmann HJ (1996) A cornucopia of four-dimensional abnormal sub-Riemannian minimizers. In: Bellaïche A, Risler J-J (eds) Sub-Riemannian geometry. Progress in mathematics, vol 144. Birkhäuser, Basel, pp 341–364

    Chapter  Google Scholar 

  • Sussmann HJ, Willems JC (1997) 300 years of optimal control: from the Brachystochrone to the maximum principle. IEEE Control Syst Mag 17:32–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Bloch, A. (2014). Optimal Control and Mechanics. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Living Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics