Agrachev AA, Sarychev AV (1996) Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann Inst H Poincaré Anal Non Linéaire 13:635–690
MATHÂ
MathSciNetÂ
Google ScholarÂ
Baillieul J (1975) Some optimization problems in geometric control theory. Ph.D. thesis, Harvard University
Google ScholarÂ
Baillieul J (1978) Geometric methods for nonlinear optimal control problems. J Optim Theory Appl 25:519–548
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Bliss G (1930) The problem of lagrange in the calculus of variations. Am J Math 52:673–744
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Bloch AM (2003) (with Baillieul J, Crouch PE, Marsden JE), Nonholonomic mechanics and control. Interdisciplinary applied mathematics. Springer, New York
Google ScholarÂ
Bloch AM, Crouch PE (1994) Reduction of Euler–Lagrange problems for constrained variational problems and relation with optimal control problems. In: Proceedings of the 33rd IEEE conference on decision and control, Lake Buena Vista. IEEE, pp 2584–2590
Google ScholarÂ
Bloch AM, Crouch PE (1996) Optimal control and geodesic flows. Syst Control Lett 28(2):65–72
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Bloch AM, Crouch PE, Ratiu TS (1994) Sub-Riemannian optimal control problems. Fields Inst Commun AMS 3:35–48
MathSciNetÂ
Google ScholarÂ
Bloch AM, Crouch P, Marsden JE, Ratiu TS (2002) The symmetric representation of the rigid body equations and their discretization. Nonlinearity 15:1309–1341
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Bloch AM, Crouch PE, Nordkivst N, Sanyal AK (2011) Embedded geodesic problems and optimal control for matrix Lie groups. J Geom Mech 3:197–223
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Bloch AM, Crouch PE, Nordkivst N (2013) Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. J Geom Mech 5:1–38
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Brockett RW (1973) Lie theory and control systems defined on spheres. SIAM J Appl Math 25(2):213–225
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Brockett RW (1981) Control theory and singular Riemannian geometry. In: Hilton PJ, Young GS (eds) New directions in applied mathematics. Springer, New York, pp 11–27
Google ScholarÂ
Brockett RW (1983) Nonlinear control theory and differential geometry. In: Proceedings of the international congress of mathematicians, Warsaw, pp 1357–1368
Google ScholarÂ
Gay-Balmaz F, Ratiu TS (2011) Clebsch optimal control formulation in mechanics. J Geom Mech 3:41–79
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Griffiths PA (1983) Exterior differential systems. Birkhäuser, Boston
BookÂ
MATHÂ
Google ScholarÂ
Manakov SV (1976) Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body. Funct Anal Appl 10:328–329
ArticleÂ
MathSciNetÂ
Google ScholarÂ
Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry. Texts in applied mathematics, vol 17. Springer, New York. (1st edn. 1994; 2nd edn. 1999)
Google ScholarÂ
Montgomery R (1993) Gauge theory of the falling cat. Fields Inst Commun 1:193–218
Google ScholarÂ
Montgomery R (1994) Abnormal minimizers. SIAM J Control Optim 32:1605–1620
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Montgomery R (1995) A survey of singular curves in sub-Riemannian geometry. J Dyn Control Syst 1:49–90
ArticleÂ
MATHÂ
Google ScholarÂ
Montgomery R (2002) A tour of sub-Riemannian geometries, their geodesics and applications. Mathematical surveys and monographs, vol 91. American Mathematical Society, Providence
Google ScholarÂ
Ratiu T (1980) The motion of the free n-dimensional rigid body. Indiana U Math J 29:609–627
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Rund H (1966) The Hamiltonian–Jacobi theory in the calculus of variations. Krieger, New York
Google ScholarÂ
Strichartz R (1983) Sub-Riemannian geometry. J Diff Geom 24:221–263; see also J Diff Geom 30:595–596 (1989)
Google ScholarÂ
Strichartz RS (1987) The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations. J Funct Anal 72:320–345
ArticleÂ
MATHÂ
MathSciNetÂ
Google ScholarÂ
Sussmann HJ (1996) A cornucopia of four-dimensional abnormal sub-Riemannian minimizers. In: Bellaïche A, Risler J-J (eds) Sub-Riemannian geometry. Progress in mathematics, vol 144. Birkhäuser, Basel, pp 341–364
ChapterÂ
Google ScholarÂ
Sussmann HJ, Willems JC (1997) 300 years of optimal control: from the Brachystochrone to the maximum principle. IEEE Control Syst Mag 17:32–44
ArticleÂ
Google ScholarÂ