Abstract
Nonlinear filters estimate the state of dynamical systems given noisy measurements related to the state vector. In theory, such filters can provide optimal estimation accuracy for nonlinear measurements with nonlinear dynamics and non-Gaussian noise. However, in practice, the actual performance of nonlinear filters is limited by the curse of dimensionality. There are many different types of nonlinear filters, including the extended Kalman filter, the unscented Kalman filter, and particle filters.
Similar content being viewed by others
Bibliography
Arasaratnam I, Haykin S, Hurd TR (2010) Cubature Kalman filtering for continuous-discrete systems. IEEE Trans Signal Process 58:4977–4993
Benes V (1981) Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5:65–92
Chorin A, Tu X (2009) Implicit sampling for particle filters. Proc Natl Acad Sci 106:17249–17254
Crisan D, Rozovskii B (eds) (2011) Oxford handbook of nonlinear filtering. Oxford University Press, Oxford
Daum F (2005) Nonlinear filters: beyond the Kalman filter. IEEE AES Magazine 20:57–69
Daum F, Huang J (2013a) Particle flow with non-zero diffusion for nonlinear filters. In: Proceedings of SPIE conference, San Diego
Daum F, Huang J (2013b) Particle flow and Monge-Kantorovich transport. In: Proceedings of IEEE FUSION conference, Singapore
Dick J, Kuo F, Peters G, Sloan I (eds) (2013) Monte Carlo and quasi-Monte Carlo methods 2012. Proceedings of conference, Sydney. Springer, Heidelberg
Doucet A, Johansen AM (2011) A tutorial on particle filtering and smoothing: fifteen years later. In: Crisan D, Rozovskii B (eds) The Oxford handbook of nonlinear filtering. Oxford University Press, Oxford pp 656–704
Gelb A et al (1974) Applied optimal estimation. MIT, Cambridge
Ho Y-C, Lee RCK (1964) A Bayesian approach to problems in stochastic estimation and control. IEEE Trans Autom Control 9:333–339
Jazwinski A (1998) Stochastic processes and filtering theory. Dover, Mineola
Julier S, Uhlmann J (2004) Unscented filtering and nonlinear estimation. IEEE Proc 92:401–422
Kailath T (1970) The innovations approach to detection and estimation theory. Proc IEEE 58: 680–695
Kushner HJ (1964) On the differential equations satisfied by conditional probability densities of Markov processes. SIAM J Control 2:106–119
Marcus SI (1984) Algebraic and geometric methods in nonlinear filtering. SIAM J Control Optim 22:817–844
Noushin A, Daum F (2008) Some interesting observations regarding the initialization of unscented and extended Kalman filters. In: Proceedings of SPIE conference, Orlando
Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter. Artech House, Boston
Sorenson HW (1974) On the development of practical nonlinear filters. Inf Sci 7:253–270
Sorenson HW (1980) Parameter estimation. Marcel-Dekker, New York
Sorenson HW (1988) Recursive estimation for nonlinear dynamic systems. In: Spall J (ed) Bayesian analysis of time series and dynamic models. Marcel-Dekker, New York, pp 127–165
Stratonovich RL (1960) Conditional Markov processes. Theory Probab Appl 5:156–178
Traub J, Werschulz A (1998) Complexity and information. Cambridge University Press, Cambridge
van Handel R (2010) Nonlinear filters and system theory. In: Proceedings of 19th international symposium on mathematical theory of networks and systems, Budapest
Villani C (2003) Topics in optimal transportation. American Mathematical Society, Providence
Zakai M (1969) On the optimal filtering of diffusion processes. Z fur Wahrscheinlichkeitstheorie und verw Geb 11:230–243
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag London
About this entry
Cite this entry
Daum, F.E. (2014). Nonlinear Filters. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_63-2
Download citation
DOI: https://doi.org/10.1007/978-1-4471-5102-9_63-2
Received:
Accepted:
Published:
Publisher Name: Springer, London
Online ISBN: 978-1-4471-5102-9
eBook Packages: Living Reference EngineeringReference Module Computer Science and Engineering