Abstract
We explore the problem of identification and control of living cell populations. We describe how de novo control systems can be interfaced with living cells and used to control their behavior. Using computer controlled light pulses in combination with a genetically encoded light-responsive module and a flow cytometer, we demonstrate how in silico feedback control can be configured to achieve precise and robust set point regulation of gene expression. We also outline how external control inputs can be used in experimental design to improve our understanding of the underlying biochemical processes.
Similar content being viewed by others
Bibliography
Komorowski M, Costa M, Rand D, Stumpf M (2011) Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc Natl Acad Sci 108(21):8645–8650
Milias-Argeitis A, Summers S, Stewart-Ornstein J, Zuleta I, Pincus D, El-Samad H, Khammash M, Lygeros J (2011) In silico feedback for in vivo regulation of a gene expression circuit. Nat Biotech 29(12):1114–1116
Ruess J, Milias-Argeitis A, Lygeros J (2013) Designing experiments to understand the variability in biochemical reaction networks. J R Soc Interface 10:20130588
Swain P, Elowitz M, Siggia E (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci 99(20):12795–12800
Toettcher J, Gong D, Lim W, Weiner O (2011) Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8:837–839
Uhlendorf J, Miermont A, Delaveau T, Charvin G, Fages F, Bottani S, Batt G, Hersen P (2012) Long-term model predictive control of gene expression at the population and single-cell levels. Proc Natl Acad Sci 109(35):14271–14276
Zechner C, Ruess J, Krenn P, Pelet S, Peter M, Lygeros J, Koeppl H (2012) Moment-based inference predicts bimodality in transient gene expression. Proc Natl Acad Sci 109(21):8340–8345
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag London
About this entry
Cite this entry
Khammash, M., Lygeros, J. (2014). Identification and Control of Cell Populations. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_92-1
Download citation
DOI: https://doi.org/10.1007/978-1-4471-5102-9_92-1
Received:
Accepted:
Published:
Publisher Name: Springer, London
Online ISBN: 978-1-4471-5102-9
eBook Packages: Living Reference EngineeringReference Module Computer Science and Engineering