Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Coarsening, Sampling, and Smoothing: Elements of the Multilevel Method

  • Chapter
Algorithms for Parallel Processing

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 105))

Abstract

The multilevel method has emerged as one of the most effective methods for solving numerical and combinatorial problems. It has been used in multigrid, domain decomposition, geometric search structures, as well as optimization algorithms for problems such as partitioning and sparse-matrix ordering. This paper presents a systematic treatment of the fundamental elements of the multilevel method. We illustrate, using examples from several fields, the importance and effectiveness of coarsening, sampling, and smoothing (local optimization) in the application of the multilevel method.

Supported in part by an NSF CAREER award (CCR-9502540), an Alfred P. Sloan Research Fellowship, and an Intel research grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Aho and J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.

    MATH  Google Scholar 

  2. S. Barnard and H.D. Simon, A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency: Practice and Experience, 6(2) 101–117, April 1994.

    Article  Google Scholar 

  3. P. Berman and G. Schnitger, On the performance of the minimum degree ordering for Gaussian elimination. SIAM Journal of Matrix Analysis and Applications, 11(1):83–88, January 1990.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bern, D. Eppstein and J.R. Gilbert, Provably good mesh generation. In 31st Annual Symposium on Foundations of Computer Science,IEEE, 231–241, 1990.

    Google Scholar 

  5. G.E. Blelloch, Vector Models for Data-Parallel Computing, MIT-Press, Cambridge MA, 1990.

    Google Scholar 

  6. H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth. In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, 226–234, 1993.

    Google Scholar 

  7. H.L. Bodlaender and T. Kloks, Better algorithms for the pathwidth and treewidth of graphs. In Proceedings of the 18th International Colloquium on Automata, Languages, and Programming, 544–555, Springer Verlag, LCS 510, 1991.

    Google Scholar 

  8. O. Boruvka, O jistém problém minimdlnim. Prd.ca Morayské Prirodovedecké Spolecnpsti, 3:37–58, 1926.

    Google Scholar 

  9. J.H. Bramble, J.E. Pasciak and J. Xu, Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comput., 55:1–22, 1991.

    Google Scholar 

  10. A. Brandt, Multi—level adaptive solutions to boundary value problems. Mathematics of Computation, 31:333–390, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Brandt, Multilevel computations: review and recent developments. Third Copper Mountain Conference on Multigrid Methods, April, 1989.

    Google Scholar 

  12. G. Brassard and P. Bratley, Fundamentals of Algorithmics, Prentice Hall, 1995.

    MATH  Google Scholar 

  13. W.L. Briggs, A Multigrid Tutorial, SIAM, Philadelphia, PA, 1987.

    Google Scholar 

  14. T. Bul and C. Jones, A heuristic for reducing fill in sparse matrix factorization. In the sixth SIAM Conference on Parallel Processing for Scientific Computing, 445–452, 1993.

    Google Scholar 

  15. T.F. Chan and B. Smith, Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes. Contemporary Mathematics, 1–14, 1993.

    Google Scholar 

  16. T.F. Chan and J. Zou, Additive Schwarz domain decomposition methods for elliptic problems on unstructured meshes. CAM Report 95–16, Department of Math, UCLA, March 1995.

    Google Scholar 

  17. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, The MIT Press, 1994.

    Google Scholar 

  18. W.E. Donath and A.J. Hoffman, Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices. IBM Technical Disclosure Bulletin, 15:938–944, 1972.

    Google Scholar 

  19. W.E. Donath and A.J. Hoffman, Lower bounds for the partitioning of graphs. J. Res. Develop., 17:420–425, 1973.

    MathSciNet  MATH  Google Scholar 

  20. I. FÂRY, On straight line representing of planar graphs. Acta. Sci. Math., 24:229–233, 1948.

    Google Scholar 

  21. M. Fiedler, Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98):298–305, 1973.

    MathSciNet  Google Scholar 

  22. M. Fiedler, Eigenvectors of acyclic matrices. Czechoslovak Mathematical Journal, 25(100):607–618, 1975.

    MathSciNet  Google Scholar 

  23. M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Mathematical Journal,25(100):619–633, 1975.

    MathSciNet  Google Scholar 

  24. I. Fried, Condition of finite element matrices generated from nonuniform meshes. AIAA J., 10, 219–221, 1972.

    Article  MATH  Google Scholar 

  25. J.A. George and J.W.H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.

    MATH  Google Scholar 

  26. J.A. George and J.W.H. Liu, The Evolution of the Minimum Degree Ordering Algorithm. SIAM Review, 31:1–19, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  27. J.R. Gilbert, G.L. Miller, and S.-H. Teng, Geometric mesh partitioning: Implementation and experiments. SIAM J. Scientific Computing,to appear, 1998.

    Google Scholar 

  28. G.H. Golub and C. Van Loan, Matrix Computations, Johns Hopkins University Press, 2nd edition, 1989.

    MATH  Google Scholar 

  29. S. Guattery and G.L. Miller, On the performance of the spectral graph partitioning methods. In Proceedings of The Second Annual ACM-SIAM Symposium on Discrete Algorithms, 233–242, 1995.

    Google Scholar 

  30. L.J. Guibas, D.E. Knuth, and M. Sharir, Randomized incremental construction of Delaunay and Voronoi diagrams, Algorithmica 7:381–413, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Hagerup and C. Rob, A guided tour of Chernoff bounds. Information Processing Letters, 33:305–308, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs. Supercomputing, 1995.

    Google Scholar 

  33. G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Scientific Computing, to appear, 1997.

    Google Scholar 

  34. B.W. Kernighan and S. Lin, An effective heuristic procedure for partitioning graphs. The Bell System Technical Journal, 291–308, February 1970.

    MATH  Google Scholar 

  35. D.G. Kirkpatrick, Optimal search in planar subdivisions. SIAM J. Comput., 12, 28–35, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  36. J.W.H. Liu, The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl., 11:134–173, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  37. G.L. Miller, D. Talmor, and S.-H. Teng, Optimal good-aspect ratio coarsening for unstructured meshes. In 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 538–547, January 1997.

    Google Scholar 

  38. G.L. Miller, S.-H. Teng, W. Thurston, and S.A. Vavasis, Automatic mesh partitioning. In A. George, J. Gilbert, and J. Liu, editors, Sparse Matrix Computations: Graph Theory Issues and Algorithms, IMA Volumes in Mathematics and its Applications. Springer-Verlag, 1993.

    Google Scholar 

  39. G.L. Miller, S.-H. Teng, W. Thurston, and S.A. Vavasis, Geometric separators for finite element meshes. SIAM J. Scientific Computing,to appear, 1998.

    Google Scholar 

  40. G.L. Miller, D. Talmor, S.-H. Teng, and N. Walkington, A Delaunay based numerical method for three dimensions: generation, formulation, and partition. In Proc. 27th Annu. ACM Sympos. Theory Comput., 683–692, 1995.

    Google Scholar 

  41. K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms, Prentice Hall, 1994.

    Google Scholar 

  42. B.N. Parlett, The Rayleigh quotient iteration and some generalizations for nonnormal matrices. Math Comp., 28(127) 679–693, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  43. B.N. Parlett, H.D. Simon, and L. Stringer, Estimating the largest eigenvalue with the Lanczos algorithm. Mathematics of Computation, 38:153–165, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Pothen, H.D. Simon, and K.-P. Lion, Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11:430–452, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  45. N. Robertson and P.D. Seymour, Graph minors II. Algorithmic aspects of tree-width. J. Algorithms, 7:309–322, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  46. H.D. Simon, Partitioning of unstructured problems for parallel processing. Computing Systems in Engineering, 2(2/3):135–148, 1991.

    Article  Google Scholar 

  47. H.D. Simon and S.-H. Teng, How good is recursive bisection? SIAM J. Sci. Comput., 18(5):1436–1445, September 1997.

    Article  MathSciNet  MATH  Google Scholar 

  48. D.A. Spielman and S.-H. Teng, Spectral partitioning works: planar graphs and finite element meshes. UCB//CSD-96–898, U.C. Berkeley, 1996.

    Google Scholar 

  49. S.-H. Teng, A geometric approach to parallel hierarchical and adaptive computing on unstructured meshes. In Fifth SIAM Conference on Applied Linear Algebra,51–57, June 1994.

    Google Scholar 

  50. S.-H. Teng, Fast nested dissection for finite element meshes. SIAM J. Matrix ANAL. and Appl., 18(3):552–565, July 1997.

    Article  MathSciNet  MATH  Google Scholar 

  51. Thomassen, C, “Planarity and duality of finite and infinite graphs”. Journal of Combinatorial Theory, Series B, 29:244–271, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  52. W.T. Tutte, Convex representations of graphs. Proc. London Math. Soc., 10(3):304–320, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  53. W.T. Tutte, How to draw a graph. Proc. London Math. Soc., 13(3):743–768, 1963.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teng, SH. (1999). Coarsening, Sampling, and Smoothing: Elements of the Multilevel Method. In: Heath, M.T., Ranade, A., Schreiber, R.S. (eds) Algorithms for Parallel Processing. The IMA Volumes in Mathematics and its Applications, vol 105. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1516-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1516-5_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7175-8

  • Online ISBN: 978-1-4612-1516-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics