Abstract
Point sets and sequences with small L2, discrepancy are useful in the evaluation of multiple integrals. For example, the average error in integration of all continuous functions over the unit cube (with respect to the Wiener measure) is given by the L2 discrepancy of the point set being used. [6] The Koksma-Hlawka inequality and Zaremba’s related inequality also imply the usefulness of low-discrepancy point sets. [4,7]
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Faure, Henri: Good permutations for extreme discrepancy, J. Num. Theory, 42 (1992) 47 – 56.
Halton, J. H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960) 84 – 90.
Harman, Glyn: On the distribution of n p modulo one, Mathematika, 30 (1983) 104 – 116.
Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Mat. Pura Appl. (IV) 54 (1961) 325 – 333.
Warnock, T. T.: Computational investigations of low-discrepancy point sets, in S. K. Zaremba (Ed.), Applications of Number Theory to Numerical Analysis, Academic Press, New York (1972) 319 – 343.
Woźniakowski, H.: Average case complexity of multivariate integration, Bull. Am. Math. Soc. 84 (1991) 185 – 194.
Zaremba, S. K.: Some applications of multidimensional integration by parts, Ann. Polon. Math. 21 (1968) 85 – 96.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1995 Springer-Verlag New York, Inc.
About this paper
Cite this paper
Warnock, T.T. (1995). Computational Investigations of Low-Discrepancy Point Sets II. In: Niederreiter, H., Shiue, P.JS. (eds) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2552-2_23
Download citation
DOI: https://doi.org/10.1007/978-1-4612-2552-2_23
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-94577-4
Online ISBN: 978-1-4612-2552-2
eBook Packages: Springer Book Archive