Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computational Investigations of Low-Discrepancy Point Sets II

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing

Part of the book series: Lecture Notes in Statistics ((LNS,volume 106))

Abstract

Point sets and sequences with small L2, discrepancy are useful in the evaluation of multiple integrals. For example, the average error in integration of all continuous functions over the unit cube (with respect to the Wiener measure) is given by the L2 discrepancy of the point set being used. [6] The Koksma-Hlawka inequality and Zaremba’s related inequality also imply the usefulness of low-discrepancy point sets. [4,7]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Faure, Henri: Good permutations for extreme discrepancy, J. Num. Theory, 42 (1992) 47 – 56.

    Article  MathSciNet  MATH  Google Scholar 

  2. Halton, J. H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960) 84 – 90.

    Article  MathSciNet  Google Scholar 

  3. Harman, Glyn: On the distribution of n p modulo one, Mathematika, 30 (1983) 104 – 116.

    Article  MathSciNet  MATH  Google Scholar 

  4. Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Mat. Pura Appl. (IV) 54 (1961) 325 – 333.

    Article  MathSciNet  MATH  Google Scholar 

  5. Warnock, T. T.: Computational investigations of low-discrepancy point sets, in S. K. Zaremba (Ed.), Applications of Number Theory to Numerical Analysis, Academic Press, New York (1972) 319 – 343.

    Google Scholar 

  6. Woźniakowski, H.: Average case complexity of multivariate integration, Bull. Am. Math. Soc. 84 (1991) 185 – 194.

    Article  Google Scholar 

  7. Zaremba, S. K.: Some applications of multidimensional integration by parts, Ann. Polon. Math. 21 (1968) 85 – 96.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Warnock, T.T. (1995). Computational Investigations of Low-Discrepancy Point Sets II. In: Niederreiter, H., Shiue, P.JS. (eds) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2552-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2552-2_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94577-4

  • Online ISBN: 978-1-4612-2552-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics